
Large-scale Incremental Data

Processing with Change Propagation

Pramod Bhatotia

Alexander Wieder, Istemi Ekin Akkus, Rodrigo Rodrigues, Umut A. Acar

MPI-SWS, Germany

USENIX HotCloud 2011

1

2

Large-scale Data Processing

•  Need to repeatedly process evolving data-sets
•  For Web search PageRank is re-computed for every crawl

•  Online data-sets evolve slowly
•  Successive Yahoo! Web crawls change by 0.1% to 10%

•  Need for incremental computations
•  Instead of re-computing from scratch

Incremental Data Processing

3

•  Systems for incremental processing
•  Google Percolator [OSDI’10]
•  Yahoo! CBP [SoCC’10]

•  Drawbacks of these systems
•  Adopt a new programming model
•  Require implementation of dynamic algorithms

Incremental Data Processing

4

•  Systems for incremental processing
•  Google Percolator [OSDI’10]
•  Yahoo! CBP [SoCC’10]

•  Drawbacks of these systems
•  Adopt a new programming model

•  Require implementation of dynamic algorithms

5

Example of a Static Algorithm

19	
8	
 36	
 14	
 25	
 31	

 Compute the maximum element in a list

 Scan the list and compute max in O(n)

6

Static Algorithm with Input Change

19	
8	
 36	

	

14	
 25	
 31	

 Modify the input and find the max

 Static algorithms re-computes from scratch: O(n)

15	

	

7

Example of a Dynamic Algorithm

14	
8	

36	

25	
 31	

19	

maintain maximum heap

8

Example of a Dynamic Algorithm

14	
8	

36	

25	
 31	

19	

15	

	

Incremental updates in O(logn)
Asymptotically faster than the static algorithm

9

Example of a Dynamic Algorithm

14	
8	

31	

25	
 19	

15	

36	

Incremental updates in O(logn)
Asymptotically faster than the static algorithm

10

Static vs Dynamic

Algorithm Simplicity Efficiency

Linked list
(Static) Easy O(n)

Heap
(Dynamic) Hard O(log n)

11

Goals

•  Retain the simplicity of static algorithms
•  Achieve the efficiency of dynamic algorithms

Can we meet these goals in distributed systems?

This talk : MapReduce

12

Our Approach

•  Take an unmodified MapReduce program
•  Automatically make it incremental

•  Basic principle: Self-adjusting computations
•  Break computation into sub-computations
•  Memoize the results of sub-computations
•  Track dependencies between input and computation
•  Re-compute only the parts affected by changes

MapReduce with Change
Propagation

Changes propagate through dependence graph

Read input

Map tasks

Reduce tasks

Write output

13

MapReduce with Change
Propagation

Changes propagate through dependence graph

Read input

Map tasks

Reduce tasks

Write output

14

15

Challenges

•  How to efficiently detect insertion/deletion ?

•  How to minimize data movement ?

•  How to perform fine-grained updates ?

16

Challenges

•  How to efficiently detect insertion/deletion ?

•  How to minimize data movement ?

•  How to perform fine-grained updates ?

How to control granularity of Reduce ?

Read input

Map tasks

Reduce tasks

Write output

17

How to control granularity of Reduce ?

Read input

Map tasks

Reduce tasks

Write output

18

Controlling Reduce Granularity

•  Leverage Combiners: pre-processing of Reduce
•  Co-located with Map task for local reduction

•  Use them to break up Reduce work

Reduce task

Combiners

Combiners

19

Contraction Phase: Tree of Combiners

Read input

Map tasks

Write output

Reduce tasks

20

Contraction Phase: Tree of Combiners

Read input

Map tasks

Contraction

Write output

Reduce tasks

21

22

Evaluation: Proof-of-concept
•  Single-node MapReduce with change propagation
•  Computing maximum for a list with single modification

Runtime!"!

Run-time for computing from scratch
Run-time for incremental computation

SpeedUp =

0.1	

1	

10	

100	

1000	

10000	

10	 100	 1000	 10000	 100000	

Sp
ee
du

p	

Number	 of	 elements	 in	 list	

Asymptotic gains with increase in size of data-set

Summary
Goals:
•  Retain the simplicity of static algorithms
•  Achieve the efficiency of dynamic algorithms

This talk:
•  How to achieve these goals in MapReduce

Future:
•  Apply principles to broad class of data processing systems

23

