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Large-scale Data Processing 

•  Need to repeatedly process evolving data-sets 
•  For Web search PageRank is re-computed for every crawl 

•  Online data-sets evolve slowly 
•  Successive Yahoo! Web crawls change by 0.1% to 10% 
 
 

•  Need for incremental computations 
•  Instead of re-computing from scratch 
 

  
    

 
 

 
 
 

  
 

 

     
 
 

  

   
 
 



Incremental Data Processing 
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•  Systems for incremental processing 
•  Google Percolator [OSDI’10] 
•  Yahoo! CBP [SoCC’10] 

•  Drawbacks of these systems 
•  Adopt a new programming model 
•  Require implementation of dynamic algorithms 
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Example of a Static Algorithm 
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  Compute the maximum element in a list 
 

    Scan the list and compute max in O(n) 
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Static Algorithm with Input Change 
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  Modify the input and find the max 
 

  Static algorithms re-computes from scratch: O(n) 
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Example of a Dynamic Algorithm 
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maintain maximum heap 
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Example of a Dynamic Algorithm 
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Incremental updates in O(logn) 
Asymptotically faster than the static algorithm 
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Example of a Dynamic Algorithm 
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Incremental updates in O(logn) 
Asymptotically faster than the static algorithm 
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Static vs Dynamic 

Algorithm Simplicity Efficiency 

Linked list 
(Static) Easy O(n) 

Heap 
(Dynamic) Hard O(log n) 
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Goals 

 

   
•  Retain the simplicity of static algorithms 
•  Achieve the efficiency of dynamic algorithms 

Can we meet these goals in distributed systems?  
 
This talk : MapReduce 
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Our Approach 

 

   
•  Take an unmodified MapReduce program 
•  Automatically make it incremental 

•  Basic principle: Self-adjusting computations 
•  Break computation into sub-computations  
•  Memoize the results of sub-computations 
•  Track dependencies between input and computation 
•  Re-compute only the parts affected by changes 

  



MapReduce with Change 
Propagation 

Changes propagate through dependence graph 

Read input 

Map tasks 

Reduce tasks 

Write output 
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Challenges 

 

   
•  How to efficiently detect insertion/deletion ? 

 
•  How to minimize data movement ? 

 
•  How to perform fine-grained updates ? 
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How to control granularity of Reduce ? 

Read input 

Map tasks 

Reduce tasks 

Write output 
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How to control granularity of Reduce ? 
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Controlling Reduce Granularity 

•  Leverage Combiners: pre-processing of Reduce 
•  Co-located with Map task for local reduction 

•  Use them to break up Reduce work 

Reduce task 

Combiners 

Combiners 
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Contraction Phase: Tree of Combiners 

Read input 

Map tasks 

Write output 

Reduce tasks 
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Contraction Phase: Tree of Combiners 

Read input 

Map tasks 

Contraction 

Write output 

Reduce tasks 
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Evaluation: Proof-of-concept 
•  Single-node MapReduce with change propagation 
•  Computing maximum for a list with single modification 

Runtime!"!

Run-time for computing from scratch 
Run-time for incremental computation 
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Summary 
Goals:  
•  Retain the simplicity of static algorithms 
•  Achieve the efficiency of dynamic algorithms 

 
This talk: 
•  How to achieve these goals in MapReduce 

Future:  
•  Apply principles to broad class of data processing systems 
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