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Abstract

We introduce Clemmys, a security-first serverless platform
that ensures confidentiality and integrity of users’ functions
and data as they are processed on untrusted cloud premises,
while keeping the cost of protection low.We provide a design
for hardening FaaS platforms with Intel SGXÐa hardware-
based shielded execution technology.We explain the protocol
that our system uses to ensure confidentiality and integrity
of data, and integrity of function chains. To overcome per-
formance and latency issues that are inherent in SGX ap-
plications, we apply several SGX-specific optimizations to
the runtime system: we use SGXv2 to speed up the enclave
startup and perform batch EPC augmentation. To evaluate
our approach, we implement our design over Apache Open-
Whisk, a popular serverless platform. Lastly, we show that
Clemmys achieved same throughput and similar latency as
native Apache OpenWhisk, while allowing it to withstand
several new attack vectors.
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1 Introduction

ServerlessComputing. Serverless computing, or Function-
as-a-Service (FaaS), is a cloud computing paradigm that
emerged to make processing of bursty, irregular event-driven
workloads cheaper, and deploymentÐsimpler [12]. To reap
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these benefits, application developers must decompose their
software in terms of the core abstraction of FaaSÐa func-

tion: a short-lived single-purpose service that is spawned to
process a single event.

Serverless paradigm implies processing data with the state-
less functions, using a fresh container to serve each request
or event. From the programmer’s point of view, functions
are written to an API and a set of libraries specified by the
platform owner, and without any assumptions about the
persistence of local files or about the underlying hardware.
This concept is already implemented in multiple open frame-
works [1, 8ś10] and commercial platforms [3, 5, 6]).

Serverless computing runs with the promise of perfect
scalability: most requests are resource-intensive, but cloud
provider performs optimal function placement across the
necessary number of nodes. Such common tasks as web
page serving do not need this guarantee, since they are I/O
bound and run for milli- or microseconds. Yet, this promise
is vital for running workloads that are CPU-bound and run
for dozens of seconds in the cloud, as, otherwise, develop-
ers would be forced to scale the system without insights
into resource availability. Thus, programmers are freed from
implementing load-balancing and autoscaling solutions for
their services, further reducing development cost.
The benefits that serverless computing presents to the

users are twofold. First, the user is freed from making de-
cisions about platform management, security, and software
updates. These tasks are delegated to the cloud provider, who
can handle them using the available infrastructure knowl-
edge. Second, with short-lived services billed per invocation,
it is possible to run in an economically efficient way even
those services that are idle most of the time.

Trust issues. Despite the significant economic benefits that
come with serverless computing, the trust issues could be-
come a dealbreaker when it comes to processing sensitive
data in the cloud. Specifically, there are two main aspects
that make cloud services extremely challenging to secure.
First, cloud applications run with a large set of system

components, which must function correctly for the system
to maintain its security properties, that is, with an excessive
Trusted Computing Base (TCB). In the cloud, TCB includes
the host (operating system, hypervisor), and the userspace
stack running on the machine. Due to the large size and
complexity of these components, they are likely to have



flaws, and it is probable that attackers can find exploitable
vulnerabilities and subvert the platform security properties.

Second, as trust in the cloud provider is unavoidable, out-
sourcing to the cloud implies giving the provider’s employees
access to the users’ data. If the employees have malicious
intentions, it could have grave consequences, especially in
case of medical and financial applications.
Although these issues are becoming a major obstacle to

adoption of serverless computing, no platform currently tries
to solve them in a principled way.

Trusted Execution Environments. There are several po-
tential ways to approach the trust problems. If it is necessary
to only store the data, users can rely on end-to-end encryp-
tion to ensure safety. However, in most cases, cloud appli-
cations need to also process the data, which is not possible
with end-to-end encryption. Applications could employ fully
homomorphic encryption schemes to enable modification of
the encrypted data [11], but the currently available schemes
are too restrictive and too costly to be used in practice [35].
Another approach is to use Trusted Execution Environ-

ments (TEE) [2, 15, 25]. TEEs provide isolated memory re-
gions for code and data, which are not accessible by the
privileged software running on a host. Thus, developer can
use these regions to store the data that must stay confidential
and integrity-protected, that is, modified only by the code
stored inside this region. TEEs cause much lower overhead
compared to homomorphic encryption. Therefore, we chose
them as a basis of our work.

Clemmys. In this paper, we present a system that allows
users to benefit from serverless computing while preserving
security of their data, for which we rely on the protection
provided by TEEs.

To tackle this problem without incurring prohibitive over-
heads, only two components of Clemmys are running inside
a TEEÐthe platform gateway and the user functions. Addi-
tionally, we develop amessage format that preservesmessage
confidentiality and integrity while the data is sent between
the other, unprotected platform components.
Our contributions include:
• We design and implement a reencrypting proxy that
terminates TLS connections and encodes function in-
vocations into our message format.

• We develop a message format that preserves message
confidentiality and integrity and can be used in a va-
riety of FaaS platforms.

• To prove the validity of our approach, we implement
Clemmys in OpenWhisk, a popular FaaS platform.

• To reduce the cost of protection, we additionally im-
plement several important SGX-specific optimizations.

Figure 1: FaaS platform architectures: (a) with
controller node as load balancer; (b) with gateway as
load balancer.

2 Background

Serverless Computing Platforms. To design a usable and
generic defence strategy for common serverless platforms,
we begin by analyzing similarities among them. For this, we
have studied architectures of several open serverless plat-
forms: OpenLambda, Iron.io, OpenWhisk, Fission.io.

We found out that all of these architectures can be boiled
down to two types shown on Figures 1a and 1b. The architec-
tures contain a gateway node, a controller node, and multi-
ple worker nodes. The architecture may also contain service
nodes such as a database system to store platform configura-
tion, message queues, and so on (not shown in the figures).

The worker nodes execute functions with specified inputs
and resource limits in response to network events. In pro-
duction deployment, there will be numerous worker nodes,
necessary to provide the advertised level of scaling.

The controller node is the central management component
of the platform. It manages the available functions images,
resource limits, user accounts, billing, and permissions. Typ-
ically there is a single controller instance connected to a
database for metadata storage.
To ensure secure connection of the platform to the In-

ternet, it uses a gateway service that terminates the TLS
connections from client and acts as a load balancer to the
workers. Some systems (e.g., OpenWhisk) use the controller
as a load balancer.

A connection between the gateway and a function can be
either direct or indirect. For example, a design may include
a message bus for reliability, so that messages that were
admitted to the system are guaranteed to produce a result.



A common pattern in serverless computing is chainingÐ
composition of functions into sequences where data is passed
from function to function without involvement of the user.
The functions in the chain can run either on different nodes,
or on a single node (for data locality).

Intel SGX and Scone. Intel SGX is an extension to the
Intel X86 architecture that allows users to create enclavesÐ
hardware-isolated memory ranges, with code inside enclave
running in a special enclave execution mode. In this mode,
memory reads that originate from code outside of the en-
clave cannot read the enclave memory, and attempts to jump
to the code outside of the enclave fail. These semantics pro-
tect from attacks by privileged software, as they prevent the
operating system, hypervisor, and SMM (System Manage-
ment Mode) from accessing enclave memory. The physical
memory that backs the enclave (called Enclave Page Cache,
EPC) is encrypted by hardware. SGX also has remote attesta-
tion capability verifies that the application is indeed running
inside the enclave.

SGX has a number of limitations. Enclave entries and exits
have a very high cost: these events cause costly TLB and
cache flushes, imposing a significant cost on both enclaved
and colocated software. Also, the EPC size in the currently
available CPUs is limited to 128Mb, out of which ~98Mb is
available to the software.When the amount of virtual enclave
memory exceeds the amount of EPC available, EPC paging

takes placeÐstale EPC pages are encrypted andwritten out to
unprotected memory, while the requested ones are put back
into the enclave. EPC paging has a significant performance
overhead and is a major problem for SGX applications.
Recent Intel CPUs support the second generation SGX

(SGXv2). The main addition in SGXv2 is support for Enclave
Dynamic Memory Management [24], which allows adding
(augmenting), modifying metadata, and removing (trimming)
EPC memory from the enclave after it started running. We
use SGXv2 to lift some of the SGXv1 restrictions.

In this work, we build on Scone shielded execution frame-
work, which is a framework for running unmodified POSIX
applications on top of Intel SGX enclaves [31].

Palaemon. Palaemon1 is a key management service (KMS)
implemented as a part of the Scone remote attestation and
configuration system, which uses an attestation scheme sim-
ilar to that of ShieldBox [19, 33]. It supports standard KMS
features, such as a flexible policy language for specifying
secrets and entities that may access them and automatic gen-
eration of secrets. Most importantly, it supports provisioning
secrets and shielding layer keys to Scone-based applications.

Palaemon is implemented to run inside an Intel SGX en-
clave alongside with the applications it attests; Palaemon
itself is attested using Intel Attestation Service (IAS) [19].

1The paper that describes Palaemon in detail is currently under submission.

It opens a possibility to operate Palaemon as a turn-key
solution, that is using a single instance per data center.
Palaemon consists of two components: Local Attestation

Service (LAS) and Configuration and Attestation Service
(CAS). LAS is running on the same node as the attested
application, and issues SGX local attestation quotes to the
CAS. LAS itself is attested using IAS. CAS is the service that
securely issues the configuration to the correctly attested
applications.

In our work, this configuration comprises function chain
configuration, cryptographic keys, and function-specific in-
formation.

3 Threat Model

We consider a typical scenario of FaaS platform operation.
A user acquires a function source from a function provider.
The function is deployed on a cloud platform managed by
an operator, who has access to the host OS on all nodes. A
malicious external attacker may try to exploit a vulnerabil-
ity anywhere in the function or in the cloud stack to gain
access to the function source or data. This scenario is the
foundation of our threat model:

• The operator should not be able to compromise confi-
dentiality and integrity of the function source and data.

• The function provider should not be able to compro-
mise confidentiality and integrity of the data processed
by the function.

• Only the user should be able to define the function
chain contents. Other parties should not be able to
drop or add arbitrary function to the user’s chain.

Specifically, we target the following attack vectors:
AV1. The operator or the external attacker inspect the mem-

ory of the functions or of the system components. This
way, they can extract session keys and decrypt the
traffic, or directly extract plaintext user data from the
process memory.

AV2. The operator reads and modifies the traffic between
the function and its users. This is possible because
messages between gateway and the functions are un-
encrypted. The external attacker could also intercept
the traffic if she compromises a part of the cloud stack.

AV3. The operator modifies the execution order of functions
in a chain to create an information disclosure. For ex-
ample, the message content that is supposed to be sent
to the user can be redirected to a logger that writes or
sends plaintext messages over the network.

In our threat model, we do not consider microarchitec-
tural attacks or memory safety [27] attacks. We assume that
approaches like Cloak [20], Varys [29], or SGXBounds [23]
will thwart them.

We also consider application vulnerabilities as orthogonal
to our work. To prevent leaks of information due to neglect



Figure 2: System architecture of Clemmys and transformations of a user request as it passes through the system.

or malicious actions of the function provider, the user must
manually inspect the function code. While theoretically a
form of static analysis or sandboxing can prevent such leaks,
we do not tackle this problem.

As with Intel SGX system resource allocation remains
under control of privileged software, Clemmys does not guar-
antee availability.

4 Design

In this section, we discuss how we can secure common FaaS
platforms from the attacks outlined in the threat model (§3).
We defend against AV1 by running each function inside Intel
SGX enclaves. We prevent AV2 by encrypting traffic between
the function and the gateway. To tackle AV3, we introduce
a protocol that cryptographically ensures the correct order
of functions.

Combined, Clemmys comprises the following generic sys-
tem architecture (see Figure 2). First, the user initiates a mu-
tually authenticated TLS connection to the gateway. Then,
every incoming HTTP request passes through the gateway
which terminates the TLS connection, reencrypts the mes-
sage body into an internal message format, and passes it
to the FaaS controller. The controller inspects the request
metadata (not modified by the gateway), and passes it to
the appropriate function on the target machine, possibly via
a message queue. On the target machine, the container is
started to process the message. As an optimization, the plat-
form could reuse a container from a previous request. The
function starts inside a Scone SGX enclave and performs
remote attestation and configuration using Palaemon. Then,
the function verifies that it is executing at the right stage of
the chain using the information from Palaemon and from the
message, decrypts and processes it. When the result is ready,

the function encrypts it and passes it either to the controller
or to the next function, depending on the current stage of
the chain. When the final result is computed, the gateway
decrypts it and writes it down to the client TLS connection.

4.1 PreventingMemory Inspection

Clemmys targets AV1 by employing SGX enclaves that hide
the memory contents from the adversaries and ensure its
integrity and confidentiality. Of all the system components,
only the API Gateway and the functions have to run in SGX

containers as these components are the only ones that inter-
act with raw user data: The rest of the system deals with be-
nign metadata, and the message content is encrypted (§4.3).

4.2 Preventing Traffic Analysis andModification

We prevent AV2 by introducing encryption between the
gateway and the functions. Note that for FaaS platforms like
OpenWhisk we cannot use TLS between the gateway and
functions, and between several functions, as a message queue
may be deployed there for reliability. Message queues are
typically used in cloud settings to decouple services and to
gain message persistence.

At this point, two alternatives are available. The strawman
solution is to run all system components inside Intel SGX
enclaves and extend the components to use TLS for com-
munication. However, this solutions comes at a significant
cost in case serverless platform has memory-intensive com-
ponents, for example Kafka. To secure these components,
it would be necessary to use SGX enclaves, where this soft-
ware would experience slowdown due to EPC paging [31].
Another alternative is to encrypt the messages at the first
client-facing node into format which can be passed through
the system transparently. We explain this approach in §4.3,
where we tackle AV2 and AV3 together.



4.3 Verifying Function Execution Order

We target AV3 by designing a protocol which cryptograph-
ically certifies that the functions are invoked in the order
specified by the developer. Our key observation is that the
user data in the messages are not read by the intermedi-
ate nodes in any way; instead, the nodes rely on metadata
transmitted in, for example, HTTP headers to schedule the
execution of functions. Thus, it is possible to encrypt the
message data and add extra information to it without any
effects on the system operation.
To facilitate secure function chaining, the protocol must

allow functions to detect and to cryptographically verify the
following violations of function chaining:

• A function is dropped from the chain.
• A function is inserted into the chain.
• The functions are executed in a wrong order.

We recognize that the message of the protocol should
contain the plaintext metadata (user certificate fingerprint
and function chain name) to query the decryption key from
Palaemon. Additionally, the format must include informa-
tion necessary to identify if the processing happened in the
right order. To achieve this goal, we store the chain (list of
functions) inside Palaemon, and include the index of the
functions in the chain in the protocol message.

Thus, given a message2 M , the resulting protocol message
has the following fields:

BASE64(C,CN ,N ,IV ,AESGCM(M,IV ,⟨C,CN ,N ⟩)K ) (1)

where:
• CÐfingerprint of user certificate;
• CNÐname of the function chain (carries no semantic
information for the function);

• NÐindex of the current function in the chain;
• AESGCM(M,IV ,B)KÐAES-GCM encryption of plain-
text messageM using key K , initialization vector IV ,
and associated data B;

The function can use the certificate fingerprintC , chain name
CN , and index N to detect the violations as follows. First,
it performs remote attestation, and gets lists of functions
in the chain and AES-GCM key for each C , CN pair from
Palaemon. Then, it uses the fingerprint and function chain
name to select the correct AES-GCM key, and verify that
the attacker did not modify the abovementioned fields. The
action uses the function name and index fields to ensure
that the processing in chains happens in the specified order.
Action looks up a function with index N in the chain CN ,
and checks if it matches the identity of the action currently
executing. If there is a match, execution of the function chain

2The message is in JSON as native OpenWhisk uses this encoding to

exchange information among the system components.

is correct. The index field N is incremented as function fin-
ishes execution and passes the message to the next function
for processing.

Function Identity. To allow chain verification, an action
running with SGX must be able to learn and verify its name
(i.e. identity) CN . In the simple case when the identity cor-
responds to a single binary, we can ensure its validity using
information from Scone and Palaemon. When Scone builds
an enclave, it also calculates a cryptographic checksum of its
initial image, called enclave measurement, verified during
the remote attestation. Palaemon can send an attested en-
clave a secret that depends on the enclave measurement. In
our case, Palaemon sends the enclave the intended identity
for this measurement after the remote attestation.
However, actions implemented in interpreted program-

ming languages require additional care. As the attestation
verifies only the interpreter and the libraries, the interpreted
application source is not included in the attestation report.
Thus, for such functions, additional measures are necessary
to bind the function identity to the executing memory image.
For Python, we suggest using Scone file system shield with
integrity and confidentiality protection [31]. In this scenario,
Palaemon performs remote attestation of the Python inter-
preter and sends the keys to the enclave for decrypting the
shielded file system image. Then, Python can read the iden-
tity of the function from the file in the shielded file system.
Support for this identity verification requires changes to the
Python interpreter, to prevent it from loading executable
scripts from unprotected file systems.

Key andConfigurationManagement.. The protocol mes-
sage outlined in §4.3 uses symmetric AES-GCM encryption.
The keys used for the encryption are generated and stored
in an external key management serviceÐPalaemonÐwith a
unique key for every user-chain pair. It allows Clemmys to
isolate requests from different clients and prohibits the ad-
versaries from moving a message from one chain to another.

Palaemon also stores information necessary for the chain
integrity protocol:

• Lists of functions inside each chain in the system.
• Bindings of function names to enclave measurements
(for native functions, C/C++/Rust).

• Decryption keys to function sources stored in a pro-
tected file system (for interpreted programming lan-
guages, Python/Node.js).

The protected components (gateway and the functions)
fetch the keys and other configuration data at the startup
of the corresponding program, after the remote attestation.
Thus, an extra round trip is required to start the application.
Its effect, however, is moderate as all communication with
Palaemon happens locally, unlike during the Intel attestation
procedure.



Clemmys relies on client certificates for client authenti-
cation, instead of the authentication system available in the
FaaS platform. Clients generate a key and use it to receive
a valid certificate signed by the Clemmys key. The gateway
verifies the client certificates and rejects connections with
those clients that do not present one. The fingerprint of the
presented certificate is used in the protocol message to iden-
tify the client. We make this decision because FaaS controller
is run without SGX protection in our case, and therefore can
be easily attacked by a privileged adversary.

5 Implementation

We rely on Apache Openwhisk to implement Clemmys. To
keep the performance impact of the protection low,we strived
to restrict the changes to as few components as possible.

API Gateway. In the original OpenWhisk design, API Gate-
way terminates TLS connections and manages functions trig-
gered over REST. The original API Gateway is implemented
using OpenResty (Nginx distribution with Luajit and numer-
ous Lua extensions). Therefore, to extend the API Gateway
with the message reencryption functionality (as explained
in §4.3), we have implemented a dedicated Nginx plugin.
The core functionality of our plugin is:
• Maintaining key and chain information after startup
and remote attestation.

• Performing message reencryption.
• Performing security checks on the messages and client
connections.

The plugin implements an Nginx rewrite phase handler
to encrypt the request before passing it to the OpenWhisk
Controller, and uses the header and body filter to receive
the reply, verify its correctness, decrypt it, and pass it to
the client (1230 lines of C code in total). We use the Nginx
configuration file to specify the REST endpoints for which
the plugin must be active.
At the plugin initialization, it scans through the process

environment variables supplied by Palaemon, and populates
the configuration tables, which are later used to process user
requests. So far, Palaemon does not support dynamic updates
to the configuration: to receive new chain configurations and
keys, the API Gateway has to be restarted. Alternatively, op-
erators can use systems like HAProxy [7] to perform a zero-
downtime configuration update. We plan to alleviate this
limitation of Palaemon and the Nginx plugin in the future.

Functionimageskeleton.We implement our own skeleton
images for native SGX functions and Python SGX function.
The native SGX image adds a configuration file for Scone
asynchronous system call interface and configures the envi-
ronment variables to set default enclave heap size. The SGX
Python image additionally replaces the stock Python from
the Alpine Linux repository with Scone-build Python and

installs a set of predefined Python packages using pip utility
and Scone cross-compiler.

Controller. We modified Controller to put the action name
in the header of replies to the łactivation getž request. This
change allowed us to avoid costly parsing that we would
have to do to secure this REST endpoint.

Invoker. Invoker is a service running on the worker node
that communicates with the Kafka queue and launches con-
tainers with functions to serve the user requests. The input
from the user is provided to the function via standard input.
We have also modified Invoker to pass additional SGX-

specific parameters to the Docker. Our modified Invoker adds
/dev/isgx device to the function container. Also, it config-
ures additional container resource limits required by Scone.

5.1 Function Startup Optimization

The requirement of not degrading the system latency clashes
with the reality of running dynamic language runtimes in-
side SGX enclaves. These runtimes typically run with huge
heaps, which increases the startup time of SGXv1 to the
range of seconds, or even tens of seconds (Table 1). To a
large extent, it is caused by the enclave loading procedure.

The enclave loading procedure has several steps: creating
control structures, adding and measuring EPC pages, and
launching the enclave using EINITTOKEN structure. Based
on our observations, the main bottleneck is in adding pages:
Even though heap pages are not measured, adding them to
the enclave still takes significant amounts of time. To reduce
the attack surface, the Scone mmap implementation also
zeroes the added pages, which slows down the application
startup when large chunks of memory are allocated.
To mitigate the impact of this issue, we rely on SGXv2

EDMM [24] features to reduce the startup time. We use the
SGXv2 EPC augmentation feature to skip adding most of the
pages during enclave creation, which can take a significant
amount of time during the enclave startup, especially with
large heaps. Instead, we allocate only a small number of heap
pages at the beginning of the heap regionÐ20MB by defaultÐ
and around 40 pages (164 kB) at the end of the region, where
the bitmap for mmap allocator is located. Scone loader skips
adding all other pages. These changes sum up to significant
savings: the SGX loader issues an ioctl to the driver for
each page that needs to be added, which copies the full page
contents into the kernel before adding them to the enclave.
Avoiding this work brings a significant improvement to the
startup time. Batching cannot reduce this cost, because it is
mostly caused by EPC metadata updates, not ioctl calls.
On top of the SGXv2 support, we implement two addi-

tional optimizations: batch EPC augmentation and zeroing
pages upon deallocations instead of allocations.



Because most of the accesses during startup cause aug-
menting enclave exits, we modify the driver and Scone run-
time to do batch augmentation of enclave memory. On the
EPC augmentation event, we prefetch a block of B pages
containing the faulting address. We allow users to configure
the amount of batching, as this optimization may not have
a large effect on most applications. While this optimization
moves cost of adding pages to time after application start,
it distributes the faulting memory accesses over long time,
reducing the EPC paging rate.

We also modify Scone to perform mmap page zeroing on
page deallocation, instead of page allocation3. The benefits
of this design are twofold. First, the fresh pages added to the
enclave via the augmentation mechanism are automatically
zeroed by the hardware. Thus, enclaves can use these pages
without zeroing them. Second, the application may optimize
its run time by exiting without zeroing memory

In general, we expect a much lower effect from the latter
two optimizations than from just switching to SGXv2. Our
optimizations are orthogonal to those published in recent
studies [13, 26] and can be applied independently.

6 Evaluation

In this section, we answer the following questions:
• How does Clemmys perform compared to native Open-
Whisk in terms of the best achievable throughput and
latency?

• What is the performance impact of the function chain
integrity protocol?

• What is the impact of our optimizations on the func-
tion startup latency?

Applications. We base our evaluation on the Fex [28] eval-
uation framework, with six computationally-intensive ap-
plications from PARSEC [18] and Phoenix [30] benchmark
suites as workloads. We used the largest inputs that do not
cause intensive EPC paging.

Methodology. The reported results are averaged over 10
runs and łmeanž is a geomean across all the benchmarks.

Testbed. We ran all the experiments on two machines with
different generations of the SGX technology. The machine
with SGXv1 has a 4-core (8 hyperthreads) Intel Xeon CPU
operating at 3.6 GHz (Skylake microarchitecture) with 32 KB
L1 and 256 KB L2 private caches, an 8 MB L3 shared cache,
and 64 GB of RAM. The machine with SGXv2 is a NUC with
a 4-core (4 hyperthreads) Intel Pentium Silver CPU operating
at 1.5 GHz (Apollo Lake microarchitecture) with 16 KB L1
and 128 KB L2 private caches, an 4 MB L3 shared cache, and
32 GB of RAM4.

3Note that deallocated pages are kept within EPC, and thus, the OS cannot

modify their contents in-between allocations.
4This was the only released SGXv2-enabled machine at the submission time.

6.1 Security Evaluation

We begin with a security evaluation of the protocol outlined
in the §4.3. To this end, we run a chain of two echo functions
implemented in Python with different identities. When the
message processing order corresponds to the specified pro-
cessing order in the chain, the functions succeed. Then, we
modify several components of the message and test if the
modified message is accepted. The results were as follows.

• Changes to certificate fingerprint, chain name, and
counter are detected by AES-GCM tag comparison.

• Sending the message to a wrong function in a chain
causes function failure due to mismatch between func-
tion identity and the intended function in the chain.

Finally, to simulate a rollback attack, we save the mes-
sage after it has been processed by the first function, and
separately invoke the second function with the same mes-
sage. We see that the second function accepts and processes
this message without signalling an error, even though this
message has been already processed before. Thus, we can
see that Clemmys offers no defence against rollback attacks.
This attack vector targets only stateful functions, which must
counter it at application level.

6.2 Response time

Next, we measure the impact of Clemmys on the overall sys-
tem response time. Because Clemmys hardens two compo-
nents of OpenWhiskÐAPI Gateway and the functionsÐwe
perform two experiments to evaluate their impacts sepa-
rately. In the first experiment, we evaluate the impact of the
Gateway in isolation by running native functions with two
configurations of the Gateway: native (as in OpenWhisk) and
protected (with our Nginx plugin, see §5). In the second ex-
periment, we isolate the impact of protecting the functions by
running a protected Gateway with native and SGX-protected
functions. In both cases, we use SGXv2 machine as the func-
tion startup time on it is is independent from heap size (see
§6.3 for details). The response times were measured for dif-
ferent levels of oversubscription, from 1 to 16 instances of a
function running in parallel. This measurement shows how
many enclaves running in parallel the system can sustain on
a single worker node. This information allows operators to
assess the requirements to their hardware platform.
The measurements of the Gateway and function impacts

are presented, accordingly on Figures 3 and 4. As we see, the
cost of protection is low and mainly amortized by the over-
head of OpenWhisk itself. Note however, that the memory
consumption of the workloads was relatively low and did
not cause intensive EPC paging.

6.3 Function startup optimizations

To evaluate the impact of our SGXv2-based optimizations on
the function startup time, we domeasurements on the SGXv2
machine. The Scone configuration uses a single enclave and
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Figure 4: Response timewithClemmys-protected functions compared tonative functions, for different numbers
of functions sharing amachine.

a system call thread, with 4Gb heap. We chose this particular
heap size because it exemplifies a CPU-bounded application
running with a dynamic programming language runtime.
We evaluate several versions of the runtime:
• SGXv1Ðno optimizations;
• SGXv2ÐSGXv2 version with EPC augmentation batch
of 20 pages;

• SGXv2 (NB)ÐSGXv2 version with the batching dis-
abled (No Batching);

• SGXv2 (NB, NO)ÐSGXv2 version without batching
and without optimized mmap allocator (No Batching,
No Optimizations).

Because of the greatly varying runtimes of experiments, we
normalize the results to the runtime of SGXv1 version. We
skipped raytrace benchmark in all cases as it required X11
libraries to build.

We show the results of these experiments on Figure 5. We
can see that in all cases there is a significant speedup from us-
ing SGXv2. On average, applications have ~20× lower latency
on Parsec benchmarks, and 10× lower latency on Phoenix
benchmarks.
To explain these results, we conducted an additional ex-

periment (Table 1), where we measured application startup
time of a no-op C application while varying heap sizes with
SGXv1 and SGXv2. We discovered that enclave startup time
depends linearly on the heap size in SGXv1 case. With larger
heap sizes initialization time can reach 35 seconds (for 4GB
heap), and it dominates the total application runtime. For
comparison, the initialization time for 4 GB heap with SGXv2

is ~0.37 seconds. Thus, the results on Figure 5 do not mean
that the applications were running faster, only that the cost
of enclave initialization became greatly reduced.
The impact of additional optimizations is limited com-

pared to just switching to SGXv2. On short-running Phoenix
benchmarks (figure not shown), these optimizations do not
have any influence. After investigation of PARSEC bench-
marks, we have discovered that only dedup and facesim

benchmarks had working sets larger than the EPC size. All
other benchmarks dynamically allocate less than 30 Mb of
memory, experience no EPC paging and get no benefit from
the proposed optimizations. The impact of the optimizations
is smaller on the dedup benchmark: after the initial setup
phase, facesim allocates memory without freeing it, lead-
ing to highly local memory use. On the other hand, dedup
has approximately 1 free call per 2 allocations, reducing the
memory allocation locality. Thus, we conclude that our op-
timizations are benefitial only for functions that constantly
allocate memory, and have no influence on most functions.

6.4 Impact of API Gateway

We evaluate the API Gateway of our system to answer the
following question: At which point does the API Gateway be-
come a bottleneck in our system compared to the native version?

To answer this question, we perform benchmarking using
our modified API Gateway running inside SGX enclave, and
a native version of API Gateway. The reencryption plugin is
disabled in the native version, otherwise the configuration
file used is the same in both version. We did not perform any
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Figure 5: Parsec benchmarks results for our SGXv2-based optimizations.

Heap Size SGXv1 startup time SGXv2 startup time

4 Gb 35 s 0.37 s
2 Gb 15.6 s 0.37 s
128 Mb 0.84 s 0.37 s

Table 1: Startup time of a no-op enclave depending
on the dedicated heap size for SGXv1 and SGXv2.

advanced Nginx configuration tuning. We perform evalua-
tion in two scenarios:

• With dummy OpenWhisk functions: We run stock
OpenWhisk with a minimal function after the API
Gateway. The function is implemented in C and re-
turns a hardcoded correct message.

• Without functions: Gateway passes the request to the
Nginx upstream that replies to all requests with the
same hardcoded message (OpenWhisk is not used).

We run the experiments on SGXv1 machine. We skip the sec-
ond scenario with a native API Gateway, as it corresponds
to normal file serving over HTTPS. On our machine, the
saturation point for a single core is at 6000 requests/s.

The results are on Figure 6. We can see that without func-
tions SGX-based API Gateways scales up to 300 requests/s.
With the OpenWhisk functions, we see that both native and
SGX versions saturate at around 225 requests/s, suggesting a
bottleneck in the OpenWhisk components different fromAPI
Gateway. The increased latency at 25 requests per second is
caused by the increased rate of container spawning, which
increases system load; but this rate is insufficient to always
cause container reuse: 14% of all containers at this rate are
freshly started, vs. less then 1% at 100 requests/s. On the other
hand, at the higher requests rates, starting at 200 request-
s/s, the system is running above its capacity and queuing
excessive messages in the Kafka queue; the fresh container
ratio at this rate is approximately 2%, and the (median, 95th
percentile) latency at Invoker is (0,045s, 0.06s).

7 Discussion

As we mentioned in §1, typical FaaS applications are CPU-
intensive, run for several seconds, and require scalability
guarantee. Applications that are I/O bound or have very
short runtime would have huge overheads from running
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Figure 6: System latency (95th percentile) with
SGX and native API Gateway with and without
OpenWhisk functions.

inside serverless platforms, as these platforms are designed
for very different workloads. Current research shows that
OpenWhisk can add up to a second of latency; accordingly,
as our evaluation of Clemmys shows, the OpenWhisk over-
head completely masks the overheads of SGX. The results,
however, are not representative of the workloads with very
long runtimes, or if OpenWhisk system latency improves.
In this case, the overheads of SGX would not be masked by
the OpenWhisk overheads, as the latter do not depend on
the workload. Previous research shows that SGX can cause
applications to become up to ~100 times slower during EPC
paging; even without resource starvation, SGX application
may see ~10% SGX overhead [31] due to memory encryption
and interrupts. These overheads can become even greater if
side-channel or Spectre attack mitigations are deployed.

Currently, Clemmys has a number of limitations. We have
already mentioned in §5 the inability to update the secure
configuration after application startup. Also, OpenWhisk
and Palaemonmanagement systems are not integrated. Thus,
when an operator creates a new function chain in the Open-
Whisk, it is not automatically added to the Palaemon, and
will not run until she manually updates the chain using the
Palaemon API. The same is true for defining keys, signing



user certificates, and so on. These inconsistencies can lead to
denial of service when, for example, function chain configu-
rations are separately changed in Palaemon and OpenWhisk.

OpenWhisk supports a number of action triggers, includ-
ing periodic activations and activations based on, for exam-
ple, Kafka streams. In our work, we have focused on the
actions triggered via REST interfaces. In future, Clemmys
can be extended to support these triggers as well.
The function chaining protocol so far supports only lin-

ear processing chains, without branching and loops. In case
of more advanced chaining graphs [17], the format of the
function chaining protocol would have to be redesigned. The
format is not OpenWhisk-specific, and can be reused with
other FaaS platforms.
Clemmys does not depend on SCONE conceptually: the

same functionality can be be implemented with Graphene-
SGX and Intel SGX SDK.

Security discussion. In this section, we argue why the se-
curity design of Clemmys is sound. First, we observe the
communication in the system: at each hop between system
nodes the communication is encrypted, either with TLS or
with Clemmys function chaining protocol. Thus, neither
eavesdropping nor message modification can cause violation
of security guarantees.
Likewise, each node that handles the plaintext data from

the user is protected inside Intel SGX enclave. All nodes that
are running without SGX get access to the user data only in
the cyphertext form. Thus, observation and modification of
the data is either not possible (access denied by Intel SGX),
or cannot affect the data confidentiality and integrity, as nei-
ther message plaintext nor keys are available. To guarantee
integrity and confidentiality of the data from third parties
(e.g. Amazon S3), it must be accessed only via TLS.

With these defences, the attacker is still able to perform
two attacks: send the message to the wrong function in a
chain, and send an outdated message to the same function
chain (rollback attack).
We have shown in the evaluation (§6) that our protocol

protects the system from the first attack: when the wrong
function receives the cyphertext message, it will verify that
the destination index in the chain of the message matches
the identity of the current function. If this is not the case, the
function will reject the message. Thus this attack should not
be possible. As far as the rollback attack is concerned, it is still
possible, and should be countered at the application level.

8 RelatedWork

Researchers and the industry have proposed several FaaS
platforms. The first production system built with serverless
architecture is AWS Lambda [3]; soon, several other open-
source [1, 8ś10] and commercial [4ś6] platforms appeared.
Yet, none of them protects against privileged attackers.

The work that most closely resembles ours is S-FaaS [14],
a trustworthy and accountable FaaS system. Like Clemmys,
S-FaaS is built on Apache OpenWhisk, and uses attastation
scheme similar to that of Palaemon. S-FaaS implements a
different key management scheme without special provi-
sions for function chaining, and focuses on providing trusted
resource usage accounting to the clients.
SecureStreams [21] proposes a system for secure stream

computations. In this system, ZeroMQ and symmetric en-
cryption are used for secure network communication, while
the stream processing functions are implemented in the Lua
programming language. In our work, we also rely on custom
protocol with symmetric encryption, while the function can
be implemented in several programming languages.

Opaque [36] is a Spark-based data analytics platform with
data-oblivious processing functions for untrusted cloud plat-
forms. Unlike Clemmys, it ensures that no information about
workload is leaked through metadata; in Clemmys, this prop-
erty is considered to be out of scope, as Clemmys deals with
much more generic workloads. Pesos [22] and Speicher [16]
proposed secure storage solutions based on Intel SGX, which
can be potentially used for the secure storage layer.
Performance issue of serverless computing has been in

the focus of research for quite some time already. Liang
Wang et al. has studied and reverse engineered resource
management policies of several commercial cloud platforms
and discovered that they do not achieve the claimed levels
of scaling [34]. Specifically, SOCK [26] and Cntr [32] have
suggested the use of lean containers to reduce the function
startup cost. SAND [13] achieves low startup time using
fine-grained function sandboxing and high-locality message
queuing and storage. These optimizations are orthogonal to
those proposed in our work.

9 Conclusion

We presented Clemmys, a secure platform for serverless
computing, that allows users to ensure confidentiality and
integrity of functions’ sources and data. Clemmys achieves
these properties by building on Apache OpenWhisk, a pop-
ular serverless platform, Palaemon, a key management solu-
tion for Intel SGX, and Scone, a Intel SGX TEE framework
for unmodified POSIX applications. As part of Clemmys, we
propose a message encryption scheme that ensures integrity
of the function chains. We have evaluated Clemmys in dif-
ferent scenarios and show that Clemmys achieves minimal
throughput and latency overhead while providing protection
against privileged adversaries.
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