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ABSTRACT

Cloud computing enables customers to access virtually un-
limited resources on demand and without any fixed upfront
cost. However, the commoditization of computing resources
imposes new challenges in how to manage them: customers
of cloud services are no longer restricted to the resources
they own, but instead choose from a variety of different
services offered by different providers, and the impact of
these choices on price and overall performance is not always
clear. Furthermore, having to take into account new cloud
products and services, the cost of recovering from faults,
or price fluctuations due to spot markets makes the picture
even more unclear.

This position paper highlights a series of challenges that
must be overcome in order to allow customers to better lever-
age cloud resources. We also make the case for a system
called Conductor that automatically manages resources in
cloud computing to meet user-specifiable optimization goals,
such as minimizing monetary cost or completion time. Fi-
nally, we discuss some of the challenges we will face in build-
ing such a system.
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General Terms

Management, Economics, Performance
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1. INTRODUCTION

Cloud computing gives programmers access to almost un-
limited resources at any given moment in time. This allows
users and organizations to dynamically adapt the resources

used to their problem, without requiring them to invest in
permanent IT infrastructure. This ease of scalability has
made cloud computing popular among end users and a sub-
ject of excitement in both research and industry. Users now
have the opportunity to move computations into the cloud
that would have otherwise be impossible or too expensive to
perform locally.

These new opportunities, however, raise new challenges.
In the past, organizations invested in building and main-
taining a certain IT infrastructure, and given that invest-
ment they could estimate how long a certain computation
would take (or even if it was feasible). In the new cloud
computing world, however, it is possible to spend an almost
unbounded amount of money acquiring seemingly infinite
resources. This changes the nature of the equation, since
now organizations must estimate the cost of a computation,
and choose how many resources should be invested in it.
Ideally, a user would invest the exact amount that is needed
to satisfy their computation goals, but no more.

The picture is further muddled by the fact that cloud com-
puting services provide many different resources. For exam-
ple, EC2 provides eight different types of virtual machine in-
stances, and it is unclear how a computation’s performance
will change if run on different instance types. In addition to
the rental of a virtual machine, cloud providers also charge
for storage and for bandwidth consumed between the cloud
and the outside world. Given these factors, without signifi-
cant analysis before deployment it is hard to know ahead of
time the exact cost of a cloud deployment. Furthermore, this
analysis is complicated by factors such as dynamic pricing
due to spot markets, or the need to account for the possi-
bility of faults, and factor in that different resources might
incur different costs for fault recovery.

This position paper advocates a system that will auto-
matically select and acquire cloud computing resources. We
begin by highlighting a number of reasons why this is a chal-
lenging problem and illustrate this fact by a real-world ex-
ample. We then propose Conductor, a sketch of a system
for automating resource management in cloud computing for
customers of cloud services. With this system, we simply ask
the user to specify simple goals, such as a budget or a dead-
line for the computation, as well as some simple information
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the pricing of those resources. This system, once deployed,
will help programmers use cloud computing infrastructure
more easily, and for less money.

2. MOTIVATING EXAMPLE

In order to motivate both the problem and the solution
presented in this paper, we first present an example based
on a real-world utilization of cloud services, illustrating that
for a very simple task there are several alternative deploy-
ment strategies with different costs. In 2007, the New York
Times converted 11 million scanned articles published be-
tween 1851 and 1980 to the PDF format [3]. The scanned
articles added up to 4TB of data, which was uploaded to
S3, Amazon’s key-value storage service. The conversion was
performed using a MapReduce job that was executed on 100
EC2 nodes and took less than 24 hours to complete. The
generated PDF files were approximately 1.5TB in total size
and were stored in S3.

We begin by producing a rough estimate of the monetary
cost of this conversion based on today’s prices for Amazon’s
cloud services. Given that the computation using EC2 nodes
took approximately 2400 machine-hours, the actual process-
ing of the articles yielded a cost of $204, assuming the use of
small EC2 instances. To this cost we must add the cost for
storing the full input and output data on S3, which amounts
to $216, and a cost of $230 for network traffic for download-
ing the result. (Data upload was free at the time of writing.)
These costs assumed that the customer was connected to the
cloud by a 100 Mbit/s uplink, for the purpose of determin-
ing how long data was stored in S3 for. Therefore, the cost
for running this job using S3 and EC2 adds up to $650.

It is interesting to note that usage of S3 accounts for a
large fraction of the overall cost. This leads us to study al-
ternatives for storing data, namely storing it locally on EC2
instances. Each small EC2 instance is equipped with a vir-
tual disk of 160GB, so the total capacity of the 100 nodes
rented would be sufficient for storing all the input and out-
put data. By using the local storage of EC2 instances in-
stead of S3 we were able to eliminate the second highest cost
item. However, this approach also requires EC2 instances to
be running for the entire duration of data upload and down-
load, thus incurring an additional cost that varies according
to the rate at which data is transferred to or from these
instances.

To quantify the cost of this alternative execution strategy,
we analyzed its impact on resource utilization. In our analy-
sis we also took into account that parts of the input data can
be processed while other parts are still being uploaded. We
found that the cost for S3 could be eliminated by using the
local disks of EC2 nodes. Assuming once more an upload
speed of 100 MBit/s, our analysis revealed that we require
an additional 230 EC2 machine-hours (at an extra cost of
less than $20) for storing data while it is being uploaded
and downloaded. The total cost for running the job using
this strategy is $455 ($225 for EC2 nodes, $230 for network
traffic). Compared to storing data on S3, we were able to
cut costs by almost one third.

This alternative strategy for storage is not always advan-
tageous. In fact, small variations in the deployment charac-
teristics can affect which option is best. For instance, con-
sider a scenario in which the customer in the above example
had a connection speed of 20Mbit/s instead of 100Mbit/s,
but the other parameters were identical. In this case, up-
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Figure 1: Total cost of example computation while
varying the fraction of input data stored on S3 ver-
sus EC2 nodes (assuming a 20Mbps upload link).

loading and downloading data to and from EC2 instances
requires instances to run for an additional 6100 machine-
hours. During this time instances would not perform com-
putations because the transfer rate is slower than the rate
at which data is consumed by the MapReduce job. As a
consequence, this scenario requires approximately 8500 EC2
machine-hours, of which only 2400 machine-hours are spent
processing the input. Thus the overall cost for executing the
job with the alternative execution strategy is $1025 ($795 for
EC2 nodes, $230 for network traffic).

Clearly the overall cost of this job depends on the amount
of data stored in S3 versus on the local disks of EC2 nodes.
The influence of the amount of data stored on S3 on overall
cost is depicted in Figure 1. Notably, as shown in the figure,
the minimum cost for this job is achieved neither by storing
all input data on S3 nor locally on EC2 nodes. Rather,
the (cost) optimal strategy is storing approximately 2TB
of input data on S3 and using the local disks of the EC2
instances for the remaining data. This result illustrates that
the optimal way of utilizing the available resources depends
on the characteristics of the job, the pricing model, and the
network speed. There is no obvious one-size-fits-all solution
for utilizing these resources optimally.

3. RESOURCE MANAGEMENT
CHALLENGES

The preceding example showed that, even for a simple ex-
ample, it is difficult to choose from the different resources
that a cloud provider makes available. In this section, we
elaborate on several factors that contribute to the difficulty
of making decisions about resource selection when outsourc-
ing computations to the cloud.

Resource and provider diversity. Cloud customers must
choose among a variety of resources with different price and
performance characteristics. This makes it hard to deter-
mine the optimal resource utilization strategy for a partic-
ular task. Furthermore, the possibility of using spare re-
sources, such as the local disk of EC2 nodes that run a com-
putation, makes it even harder to decide which resource to
use.

Dynamic Pricing. The pricing for cloud services can vary
over time as providers adjust their pricing models, or when
new providers emerge. In addition, recently, spot markets
for cloud computing services have been introduced (e.g., dy-
namic pricing for Amazon’s EC2 instances). Spot markets
bring new opportunities, as well as new challenges for cus-
tomers. Customers may choose to delay tasks until the spot
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Figure 2: System overview

market price is low. On the other hand, resource utilization
must be adjusted to price at runtime, thus making manage-
ment more difficult.

Faults. The reliability of storage and computation is of
particular importance when using cloud computing services
for executing jobs based on higher-level languages like Pig
[9]. Pig programs compile down to multi-staged MapReduce
computations in which the result of one stage is used as the
input of the subsequent stage. When intermediate results
become unavailable due to data loss, they must be recom-
puted by re-executing all previous stages. The cost for re-
covery hence depends on the number and complexity of the
previous stages, and generally increases as the computation
progresses [6]. Therefore, when the reliability characteris-
tics of the available storage options differ, it is important to
factor in the cost of recovery when computing the total cost
of each option.

Tightly coupled data and computation. Although cloud
computing providers offer separate services for storage and
computation, computation is often tightly coupled with its
input and output data: to perform a computation, the input
data must be transferred to where the computation is per-
formed. A consequence for resource management in cloud
computing is that the time and cost this transfer incurs must
be considered in determining a plan for resource utilization.
The coupling between data and computation also prevents
simplistic resource management approaches, such as always
using the cheapest one — this could lead to increasing the
overall cost or the completion time because of the cost of
transferring the data between computation and storage lo-
cations.

All of the above issues raise the bar for determining the
right set of cloud resources to choose from. Next, we outline
how we intend to tackle this problem in a way that addresses
these issues.

4. CONDUCTOR: CHOOSING CLOUD
COMPONENTS

In this section we give an overview of our solution and
describe some of the challenges of building such a system.

We propose a system called Conductor that takes the fol-
lowing input: (1) a computation to be executed in the cloud,
(2) a set of cloud services that could be used for executing
the computation, and (3) a set of goals to optimize the ex-
ecution for, such as minimizing execution time for a given
monetary budget, minimizing cost for a given time budget,
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or some combination of the two.

Given these inputs, the goal of Conductor is to find an
execution plan that selects the resources to best meet the
goals specified by the customer. Furthermore, the system
should be able to deploy and execute this plan, as well as
adapt to changing conditions, such as dynamic pricing or
node failure.

At a high level, the way we achieve this goal can be de-
scribed as follows (as depicted in Figure 2).

1. Model the computation, the set of resources available
from various cloud computing providers, their cost,
and their performance.

2. The node responsible for planning, typically under con-
trol of the customer, determines the optimal job exe-
cution plan automatically, by using a solver.

3. Deploy the planned execution and monitor the exe-
cution to identify conditions that constitute possible
deviations from the original model.

4. Feed the new conditions back to the model, and com-
pute a new plan, and alter the deployment accordingly.

In the following sections we describe challenges arising in
each of these steps, and sketch an approach to address them.

4.1 Modeling computations

Our approach to modeling computations is to partition
the computational job and the cloud services by the types
of resources that are consumed or offered (e.g., computing
versus storage resources), and use a graph to model the de-
pendencies between stages of the computation as shown in
Figure 3.

Each step of the computation job is represented as a ver-
tex, and edges between these computation vertices and stor-
age vertices represent the possible data flow of the job for
a particular resource. Edges are annotated with monetary
cost and time needed for the computation nodes to access
the storage service, and these costs can be derived from ser-
vice descriptions that are offered by cloud providers. Data
migration between two storage services is represented as an
edge between corresponding vertices, and is annotated with
the monetary cost and time for migration.

The output data size as well as processing performance
of the computation nodes can initially be estimated, and



during runtime the model can be updated with extrapo-
lated measurements obtained during the execution. These
measurements can be performed by each computation node
during runtime. Nodes can monitor the processing speed as
well as the output data size in each phase of the job. Sim-
ilarly, the the network transfer performance between com-
putation nodes and storage vertices can be sampled. The
results of these measurements can then be transmitted to
the node that performs the planning, processed using sta-
tistical methods, which enables the model to be updated
accordingly.

A primary challenge is how to predict data access pat-
terns of computations, which is needed to model data flow
as described above. To start, we consider only applications
based on MapReduce, which, given the popularity of this
computing paradigm, covers a large class of useful applica-
tions. This enables us to leverage the fact that these jobs
exhibit a data-parallel structure for which the data-flow can
be pre-computed. The details about how we model MapRe-
duce computations using linear programming appear in a
separate document [13].

4.2 Programming abstractions

Once Conductor finds an optimal execution plan for a
model of a job and available resources, it deploys the plan
by instantiating the appropriate cloud services. The chal-
lenge is that different services may have different storage
and computation interfaces. To address this, we will pro-
vide a uniform interface via abstraction layers for storage
and computing resources. This allows us to transparently
manage the resources according to the execution plan and
hide complexity from the application.

For storage, we envision a key-value storage service, simi-
lar to Amazon’s S3. Key-value-storage is generic enough for
a range of other abstractions to be built on top of it. For
instance, there are already multiple file system implementa-
tions built on key-value stores [8]. Also, many existing appli-
cations already support the use of S3 as data storage, so they
will need only minor modifications when using our system.
This is the case, in particular, of the Hadoop open source
implementation of the MapReduce programming paradigm.
Since storage is abstracted we can easily replace key-value
storage in S3 with local storage from the VM instances.

For computation it is more difficult to create an abstrac-
tion layer for different services. For instance, it is easy to
provide a MapReduce computation service (like Amazon’s
Elastic MapReduce service) on top of a virtual machine ab-
straction, but the inverse is not true. Since our initial ap-
proach is to restrict ourselves to MapReduce computations,
we can use a MapReduce service as our abstraction for com-
putational resources, and still incorporate different service
providers that offer VM-based computation services.

5. RELATED WORK

Automatic resource management has been studied in other
contexts. For example, operating systems automatically al-
locate resources; cluster resource management systems have
been proposed [2, 4]; and resource management in Grid com-
puting has also been studied [7, 11]. In cloud computing,
resource management presents new challenges that are not
addressed by previous work. Namely, as opposed to clus-
ters and grids, a cloud computation has access to infinite
resources but must pay an increased marginal cost for each
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resource it uses. In addition, cloud computing exposes het-
erogeneous resources to the client. Our system takes these
distinguishing features into account, and modeling them is
one of the primary challenges of this work.

Rhizoma [14] proposed automating resource allocation for
generic applications. Rhizoma also uses a specification of
resources and maximizes the utility for an application. Al-
though Rhizoma uses cloud computing as motivation, the
application they describe is that of a publish-subscribe sys-
tem deployed on PlanetLab, where the challenge is to find
well-connected, lightly loaded nodes. Unlike Rhizoma, our
proposal is geared towards MapReduce computations, with-
out requiring the specification of application resource re-
quirements.

There exist tools that are able to simulate the execution
of MapReduce computations in a given cluster setup [12].
These take into account properties like the network topol-
ogy, hard disk characteristics, and system configuration pa-
rameters. However, in cloud computing, many of these fac-
tors are not visible to customers, and beyond their control.
Also, these tools are oblivious to the economics and dynam-
ics of cloud computing resources. Still, we envision lever-
aging some of these modeling and simulation techniques for
our system in order to optimize configuration parameters of
the MapReduce implementation.

We model the problem of cloud resource allocation as a
linear program. Modeling other problems in such a way has
been done a variety of fields including systems research [5].
A reason for using optimization is that it allows us to adapt
to dynamic markets for computation (such as the spot in-
stances of Amazon EC2) and to characterize the properties
of diverse resources. Similarly, a recent proposal [10] seeks
to shift computations among multiple data centers based on
changing electricity prices in the spot market.

Dynamic allocation of spot instances for MapReduce com-
putations has also been proposed recently [1]. In contrast
to this approach, we focus on the broader problem of trying
to incorporate multiple providers of potentially diverse re-
sources (both from regular and spot markets) to determine
a globally optimal resource allocation plan.

6. DISCUSSION

In this section we discuss some obstacles and opportunities
that are left open by the paper.
Economic incentives: Our system allows customers to
adapt resource usage to the prices available at a given time.
If many users adopt our system it may lead to a change in
cloud computing economics. Our system could make the
market for computation more efficient, as price changes will
stimulate demand when clients adapt to lower costs. This
may lead undesirable side effects for the provider, such as
lower revenue. A consequence of this may be that providers
seek to lock in users by offering low introductory rates for
storage and later increase data transfer costs to prevent
migration of data to other providers. Providers may also
lower prices for users willing to commit to a fixed price con-
tract. We see this leading to a cloud computing market that
more resembles the market for commodities such as electric-
ity [10], where unused resources are offered at lower prices,
and heavy users adapt to the excess supply by increasing
demand.
Generalization of computing model: In this paper
our discussion focused on a restricted model of computa-



tion, that of MapReduce. Going forward we seek to gener-
alize our techniques to other types of cloud computing us-
age scenarios. For example, we aim to support applications
ranging from computation intensive simulation applications,
to network services such as web applications. The charac-
teristics of these applications in terms of workload, perfor-
mance goals, computation predictability all very different.
Successfully applying our techniques to a more general class
of applications may require developing new models to pre-
dict application behavior, or require application developers
to add instrumentation to support better monitoring.

7. CONCLUSION

In this paper we motivated and sketched the design of
Conductor, a system than assists cloud customers in choos-
ing the right set of resources to use when outsourcing com-
putations to the cloud. The premise underlying this paper
is that the selection and management of cloud resources is a
complicated task, that will only get worse as cloud providers
join and leave the market, and the offer of cloud services be-
comes ever more diverse. Anecdotally, after the submission
of this paper, Amazon announced a reduced redundancy
storage service that promises to offer less expensive stor-
age but with lower availability and durability targets. This
exemplifies the problem that this paper is considering: en-
abling customers of Amazon’s storage services to more easily
determine if it is worth migrating its computations to take
advantage of this new option, and also providing mecha-
nisms to do so seamlessly.

To address this set of problems we propose Conductor, a
system that automates the task of choosing and managing
the right set of cloud resources for a class of cloud applica-
tions. Conductor only requires uses to specify simple goals
and some information about the computation, and uses op-
timization tools to determine an execution plan, which can
be adapted to the actual deployment conditions. Conductor
is an important first step in the direction of improving the
selection of cloud resources and hiding heterogeneity and
management complexity from users. Yet, the current de-
sign still has important limitations, notably being restricted
to MapReduce computations, which have a predictable re-
source access pattern. Generalizing the set of supported
computations and making the system even more adaptive
to their behavior is an important avenue of future work.
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