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Code reuse is everywhere...
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● Libraries
● Frameworks
● Software components
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● Inconsistent results
○ no guarantee of reproducibility 
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Surprisingly, not many solutions

● Benchmark suites [PARSEC, SPEC]

○ narrow view
○ hard to extend

● Sound measurement tools [Stabilizer, Coz]

○ improve experimental environment
○ no automation

● Build tools [Automake, CMake, Scons]

○ automatic build configuration
○ only build stage
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Design goals 
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● Extensibility
● Reproducibility
● Practicality



Extensibility
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● Goal:
○ easy to create new experiments

● Solution:
○ out-of-the-box experiments
○ customization



Reproducibility

● Goal:
○ guaranteed software stack

● Solution:
○ Docker integration
○ scripts for specific software versions
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Practicality

● Goal:
○ simple to compose benchmarks

● Solution:
○ loosely coupled build system
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Outline

● Motivation
● Design
● Demo
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Workflow
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● Application-specific
● Type-specific
● Environment variables

● Experiment 
execution

● Hooks for 
customization

● Parse logs
● Aggregate and 

analyze
● Store results

● Based on matplotlib
● Superclasses for 

common plots



Outline
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● Motivation
● Design
● Demo



A simple experiment
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● Evaluate GCC optimizations
○ performance overhead
○ on benchmarks from Phoenix 3.0



Summary

Automate your research 
to make it:

● efficient
● flexible
● comprehensive
● reproducible
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Summary
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Thanks!
oleksii.oleksenko@tu-dresden.de

Automate your research 
to make it:

● efficient
● flexible
● comprehensive
● reproducible

https://github.com/tudinfse/fex
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Backup
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Outline

29

● Motivation
● Design
● Demo
● Example



Origin

Started as an internal tool:

● Elzar [DSN'16]

● SGXBounds [EuroSys'17]

● MPX Explained
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SGXBounds
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● 4 experiment types
● 2 environment:

○ in- and outside SGX enclaves
● 2 compilers
● 38 benchmarks

○ 3 benchmark suites
● 3 case-studies
● 1 security benchmark


