
Fex
A Software Systems Evaluator

Oleksii Oleksenko,
Dmitrii Kuvaiskii, Christof Fetzer Pramod Bhatotia

1



Code reuse is everywhere...

2

● Libraries
● Frameworks
● Software components



... but not in evaluation workflow

● Ad-hoc scripts
○ Bash / Python / R

3



... but not in evaluation workflow

● Ad-hoc scripts
○ Bash / Python / R

● Written from scratch
○ for each new project

3



... but not in evaluation workflow

● Ad-hoc scripts
○ Bash / Python / R

● Written from scratch
○ for each new project
○ for each new benchmark suite

3



... but not in evaluation workflow

● Ad-hoc scripts
○ Bash / Python / R

● Written from scratch
○ for each new project
○ for each new benchmark suite
○ for each new experiment

3



Consequences 

● Rigid setup
○ hard to extend
○ often, leads to simplistic evaluation

4



Consequences

● Rigid setup
○ hard to extend
○ often, leads to simplistic evaluation

● Inconsistent results
○ no guarantee of reproducibility 

4



Surprisingly, not many solutions

● Benchmark suites [PARSEC, SPEC]

○ narrow view
○ hard to extend

5



Surprisingly, not many solutions

● Benchmark suites [PARSEC, SPEC]

○ narrow view
○ hard to extend

● Sound measurement tools [Stabilizer, Coz]

○ improve experimental environment
○ no automation

5



Surprisingly, not many solutions

● Benchmark suites [PARSEC, SPEC]

○ narrow view
○ hard to extend

● Sound measurement tools [Stabilizer, Coz]

○ improve experimental environment
○ no automation

● Build tools [Automake, CMake, Scons]

○ automatic build configuration
○ only build stage

5



Design goals 

6

● Extensibility
● Reproducibility
● Practicality



Extensibility

7

● Goal:
○ easy to create new experiments

● Solution:
○ out-of-the-box experiments
○ customization



Reproducibility

● Goal:
○ guaranteed software stack

● Solution:
○ Docker integration
○ scripts for specific software versions

8



Practicality

● Goal:
○ simple to compose benchmarks

● Solution:
○ loosely coupled build system

9



Outline

● Motivation
● Design
● Demo

10



Workflow

11



Workflow

11

● Application-specific
● Type-specific
● Environment variables



Workflow

11

● Application-specific
● Type-specific
● Environment variables

● Experiment 
execution

● Hooks for 
customization



Workflow

11

● Application-specific
● Type-specific
● Environment variables

● Experiment 
execution

● Hooks for 
customization

● Parse logs
● Aggregate and 

analyze
● Store results



Workflow

11

● Application-specific
● Type-specific
● Environment variables

● Experiment 
execution

● Hooks for 
customization

● Parse logs
● Aggregate and 

analyze
● Store results

● Based on matplotlib
● Superclasses for 

common plots



Outline

12

● Motivation
● Design
● Demo



A simple experiment

13

● Evaluate GCC optimizations
○ performance overhead
○ on benchmarks from Phoenix 3.0



Summary

Automate your research 
to make it:

● efficient
● flexible
● comprehensive
● reproducible

14



Summary

14

Automate your research 
to make it:

● efficient
● flexible
● comprehensive
● reproducible

https://github.com/tudinfse/fex

https://github.com/tudinfse/fex


https://github.com/tudinfse/fex

Summary

14

Thanks!
oleksii.oleksenko@tu-dresden.de

Automate your research 
to make it:

● efficient
● flexible
● comprehensive
● reproducible

https://github.com/tudinfse/fex


27



Backup

28



Outline

29

● Motivation
● Design
● Demo
● Example



Origin

Started as an internal tool:

● Elzar [DSN'16]

● SGXBounds [EuroSys'17]

● MPX Explained

30



SGXBounds

31

● 4 experiment types
● 2 environment:

○ in- and outside SGX enclaves
● 2 compilers
● 38 benchmarks

○ 3 benchmark suites
● 3 case-studies
● 1 security benchmark


