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Hardware Errors in the Wild

1

„…Corruption can occur transiently in 
CPU or RAM. Guarding against such 
corruptions is an important goal in 
Mesa’s overall design…“

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• These faults can lead to arbitrary state corruptions

„…There were a handful of messages 
that had a single bit corrupted such 
that the message was still intelligible, 
but the system state information was 
incorrect…“
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☺ Tolerates arbitrary faults

☹ Pessimistic fault model
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☺ Low performance overheads

☹ Only anticipated faults
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Principled 
approaches

Ad-hoc 
approaches

Checksums / AssertionsByzantine Fault Tolerance



DSN'16

Protecting Against Data Corruptions

2

Principled 
approaches

Ad-hoc 
approaches

Byzantine Fault Tolerance Checksums / Assertions

Triple Modular Redundancy



DSN'16

Protecting Against Data Corruptions

2

Principled 
approaches

Ad-hoc 
approaches

Byzantine Fault Tolerance Checksums / Assertions

☺ Practical fault model

better 
performance

Triple Modular Redundancy



DSN'16

Protecting Against Data Corruptions

2

Principled 
approaches

Ad-hoc 
approaches

Byzantine Fault Tolerance Checksums / Assertions

☺ Practical fault model

☺ Disciplined protection

better 
performance

better 
fault coverage

Triple Modular Redundancy
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Triple Modular Redundancy
(TMR) with SIMD

Source code Executable
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z  = add x, y
 

z  = add x,  y
z2 = add x2, y2
z3 = add x3, y3
 

Native TMR
 

zwide = add xwide, ywide
 
 

TMR with SIMD

Idea      SIMD uses less instructions  less perf overhead?→
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Research Question

4

Can we use SIMD for efficient fault tolerance?

Implementation using Intel AVX
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Elzar

ElzarSource code Executable

5

 
CPU

 AVX

Implementation Intel AVX for triple modular redundancy

Outcome Mixed results  ☹ (AVX not general-purpose)

Investigation Two bottlenecks in current AVX
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Intel AVX Background

6

New registers
YMM0

256 bit

YMM1

YMM2

…

YMM15

64-bit 64-bit 64-bit 64-bit

New instructions
+

x1 x2 x3 x4

y1 y2 y3 y4

x1+y1 x2+y2 x3+y3 x4+y4

YMM0

YMM1

YMM2
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AVX as free resource?

unused used

AVX is not actively used?    Reuse for fault tolerance!→

7
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 ☑ Motivation

☑ Intel AVX

 ☐ Design

 ☐ Evaluation

 ☐ Discussion
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Fault Model

8

–  Protect against transient faults in CPU
• corruptions in CPU registers

• miscomputations in CPU execution units

–  Memory is protected by other means
• DRAM protected by ECC

• CPU caches protected by ECC and parity

 CPU

Memory
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x  = load a
 

z  = add x,  1
z2 = add x2, 1
z3 = add x3, 1
 

majority(z, z2, z3)
 

Bottleneck 2: Checks are expensive  ☹
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Bottleneck 1: Memory accesses

 

x  = avx-load a
 

z  = avx-add x,  1
 

avx-check(z)

No such thing as avx-load!  ☹

10
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load

a a a a

a

extract

 

x  = avx-load a
 

z  = avx-add x,  1
 

avx-check(z)

x

x x x x

broadcast

Memory accesses require wrappers  ☹
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shuffle
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FLAGS
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 proceed>
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z z z' z

z z z'

shuffle

z z⊕ z z⊕ z z'⊕ z' z⊕

z

FLAGS

xor

ptest

recover

jne

11

 

x  = avx-load a
 

z  = avx-add x,  1
 

avx-check(z)

Checks introduce additional 55% overhead ☹
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Performance overheads

(1) Native benefits from AVX vectorization
(2) Most of time spent in mem-intensive bzero()

lower
better
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Comparison with SWIFT-R  (state-of-the-art TMR approach)

Elzar produces 3x less instructions than SWIFT-R  ☺

lower
better
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☑ Evaluation

 ☐ Discussion
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Bottlenecks and Proposed Solution

Problem AVX lacks certain instructions
–  Need wrappers for memory accesses

–  Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
–  Intel's Xeon-FPGA pairing

Potentially 71% better than SWIFT-R

14

CPU

addr addr addr addr

val val val val

val

FPGA Memory

addr

majority votingload

replication
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Conclusion

ElzarSource code Executable

 
CPU

 AVX

 

Implementation Intel AVX for triple modular redundancy

Hypothesis Less instructions  → less perf overhead

Outcome 46% worse than SWIFT-R

Discussion With FPGA, ~71% better than SWIFT-R

15
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Thank you!
dmitrii.kuvaiskii@tu-dresden.de

GitHub repo:  https://github.com/tudinfse/elzar
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backup slides
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Intel Haswell CPU microarchitecture

Instruction Scheduler

64-bit
ALU

256-bit
MUL

256-bit
FMA

64-bit
ALU

256-bit
FADD

256-bit
ALU

64-bit
ALU

64-bit
ALU

256-bit
ALU

256-bit
Shuffle

Memory
access

port 0 port 1

port 5

port 6

ports
2-4,7

 Intel AVX units
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Elzar: Check on Branch

x1 x2 x3 x4

y2 y3 y4

x1=y1 x2=y2 x3=y3 x4=y4

y1

FLAGS

ptest

recover

ja

 

cmp x, y
jne truebranch
 

Native

cmpeq

true branch false branch

jne

je

Impact    Checks on branches introduce only 4% overhead  ☺
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Main Bottlenecks

Problem     AVX instruction set lacks certain instructions

–  Loads/stores require extracting AVX-replicated address
• Elzar creates expensive wrappers around loads/stores

• AVX-512 introduces promising gather/scatter instructions

–  AVX has only one control-flow instruction ptest
• Elzar has to insert ptest for each control-flow decision

• AVX could add cmp instructions directly affecting control flow

–  AVX misses integer division, integer truncation, etc…
• Elzar produces very ineffective code in these cases
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mailto:dmitrii.kuvaiskii@tu-dresden.de
https://github.com/tudinfse/elzar
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Estimation of Proposed Changes

Estimated average overhead would be 48%
(71% improvement over SWIFT-R)

lower
better
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