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Hardware Errors in the Wild

* Online services run in huge data centers
* Hardware faults are the norm rather than the exception

* These faults can lead to arbitrary state corruptions

amazon
webservices SERVICE HEALTH DASHBOARD

Amazon Web Services » Service Health Dashboard » Amazon S3 Availability Event: July 20, 2008

Amazon S3 Availability Event: July 20, 2008

We wanted to provide some additional detail about the problem we experienced on Sunday, July 20th.

»...There were a handful of messages
that had a single bit corrupted such
that the message was still intelligible,
but the system state information was
incorrect...”
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Hardware Errors in the Wild

* Online services run in huge data centers Go g|€

* Hardware Faults are the norm rather than the exception amazon
* These faults can lead to arbitrary state corruptions - .
m Microsoft

amazon
webservices SERVICE HEALTH DASHBOARD

Amazon Web Services » Service Health Dashboard » Amazon S3 Availability Event: July 20, 2008

Amazon S3 Availability Event: July 20, 2008

We wanted to provide some additional detail about the problem we experienced on Sunday, July 20th.

Mesa: Geo-Replicated, Near Real-Time, Scalable Data

Warehousing
»...There were a handful of messages
that had a single bit corrupted SUCh Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan
e o . . Kevin Lai, Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal
that the message was still intelligible, Sanjay Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddigi, David Jones
. . Jeff Shute, Andrey Gubarev, Shivakumar Venkataraman, Divyakant Agrawal
but the system state information was Google, Inc.

incorrect...” : . .
»...Corruption can occur transiently in

CPU or RAM. Guarding against such

corruptions is an important goal in
Mesa’s overall design..."
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Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
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Protecting Against Data Corruptions
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approaches approaches
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Byzantine Fault Tolerance Checksums / Assertions

© Tolerates arbitrary faults
@ Pessimistic fault model

® High resource overheads
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Byzantine Fault Tolerance

Checksums / Assertions

Triple Modular Redundancy
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Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
- s

Byzantine Fault Tolerance Checksums / Assertions

Triple Modular Redundancy
better

performance

| © Practical fault model better
fault coverage

© Disciplined protection |
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Triple Modular Redundancy

Source code _,| Triple Modular Redundancy
(TMR)

——» Executable
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[

CPU
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Triple Modular Redundancy

Source code _,| Triple Modular Redundancy
(TMR)

——» Executable
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CPU

Native

z =add x, vy
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Triple Modular Redundancy

Source code _,| Triple Modular Redundancy > Executable
. (TMR)
CPU
Native TMR
z =add x, vy z =add x, vy
z; = add x;, y»

add X3, V3

N
w
I
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Triple Modular Redundancy

Triple Modular Redundancy
Source code . ——» E tabl
> (TMR) with SIMD xecitabie

B 5

CPU

Native TMR TMR with SIMD

z =add x, vy z =add x, vy Zwide = add Xuwide, VYwide
Zy = add X2, VY>
z3 = add X3, y3
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Triple Modular Redundancy

Source code

> (TMR) with SIMD

Triple Modular Redundancy ‘

Executable

é.

y
CPU
Native TMR TMR with SIMD
z =add x, vy z =add x, vy Zwide = add Xuwide, VYwide
z; = add x;, y»
z3 = add x3, y3
Idea SIMD uses less instructions = less perf overhead?
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Research Question

Can we use SIMD for efficient Fault tolerance?
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Research Question

Can we use SIMD for efficient Fault tolerance?

Implementation using Intel AVX
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Source code —» Elzar ——» Executable

V- A
AVX f

CPU

Implementation Intel AVX for triple modular redundancy
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Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Outcome Mixed results @ (AVX not general-purpose)
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Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Outcome Mixed results @ (AVX not general-purpose)
Investigation Two bottlenecks in current AVX
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Y1 Motivation
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Design
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Intel AVX Background

256 bit
New registers < -
YMMO

YMM1
YMM2

~ ™~

| 64-bit | 6a-bit | e4-bit | 64-bit |

DSN'16



Intel AVX Background

256 bit
New registers < -
YMMO

YMM1
YMM2

~ ™~

| 64-bit | 6a-bit | e4-bit | 64-bit |

New instructions X1 X2 X3 X4 YMMO

Y1 y2 y3 Yaq YMM1

| X1+Y1 | Xaty2 | X3+y3 | X4tY4 |YMM2
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AVX as free resource?

AVX is not actively used?
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AVX as free resource?

AVX is not actively used?

unused used

histogram I
kmeans |
linear regression I
matrix multiply :
|
I

Phoenix

pca
string match
wordcount | L]
blackscholes
dedup

ferret

I
I
I
fluidanimate I
|
I
I

PARSEC

streamcluster
swaptions

x2e4 ]
memcached I
sqlite3 I
apache |

Apps
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AVX as free resource?

AVX is not actively used? — Reuse for fault tolerance!

unused used

histogram
kmeans

linear regression
matrix multiply
pca

string match
‘wordcount |
blackscholes
dedup

ferret
fluidanimate
streamcluster
swaptions
x264 |
@ memcached

Q sqlite3

< apache

Phoenix

PARSEC

-20% 0% 20% 40% 60%
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/] Motivation
/] Intel AVX
Design

Evaluation

Discussion
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- Protect against transient Faults in CPU
« corruptions in CPU registers CPU

* miscomputations in CPU execution units

- Memory is protected by other means
* DRAM protected by ECC Memory
* CPU caches protected by ECC and parity

DSN'16 8



Elzar by Example

Native

x = load a
z =add x, 1
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Elzar by Example

Native TMR

Xx = load a Xx = load a

z =add x, 1 z =add x, 1
Zy = add X2, 1
Z3 = add X3, 1

majority(z, z,, z3)
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Elzar by Example

Native TMR Elzar

Xx = load a x = load a X = avx-load a

z =add x, 1 z =add x, 1 z = avx-add x, 1
Zy = add X2, 1
Z3 = add X3, 1
majority(z, z,, z3) avx-check(z)
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Elzar by Example

Native TMR Elzar

z =add x, 1 z =add x, 1 z = avx-add x, 1
Zy = add X2, 1
Z3 = add X3, 1

Common instructions introduce lower overhead ©
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Elzar by Example

Native TMR Elzar

x = load a x = load a X = avx-load a

Bottleneck 1: Memory accesses require wrappers @
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Elzar by Example

Native TMR Elzar

majority(z, z,, z3) avx-check(z)

Bottleneck 2: Checks are expensive ®
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Bottleneck 1: Memory accesses

X = avx-load a
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Bottleneck 1: Memory accesses

x = avx-load a ' No such thing as avx-load! ®
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Bottleneck 1: Memory accesses

X

avx-load a
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RAM
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Bottleneck 1: Memory accesses

X = avx-load a

extract

[ ]
a >

RAM

broadcast

XX‘X‘X‘
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Bottleneck 1: Memory accesses

X

avx-load a

extract
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[ ]
a >

RAM

broadcast

XX‘X‘X‘

Memory accesses require wrappers @
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Bottleneck 2: Checks

avx-check(z)
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Bottleneck 2: Checks

‘21‘22‘23‘24‘

avx-check(z)
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Bottleneck 2: Checks

‘21‘22‘23‘24‘
avx-check(z) shuffle : L :

Zo Z1 Z4 Z3
o T T T
A 4 v Vv A 4

Z2,0z9 | 2192, ‘ 24923 | Z3@2Z4
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Bottleneck 2: Checks

‘ Z1 ‘ Z2 ‘ Z3 ‘ Z4 ‘
avx-check(z) shuffle : L :

Zo Z1 Z4 Z3
o T T T
A 4 v Vv A 4

Z,®24 ‘ 2192z; | Z4®23 ‘ 23024

ptest

| FLAGs |
l<all Zeros,

proceed>
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Bottleneck 2: Checks

avx-check(z)




Bottleneck 2: Checks
‘ Z ‘ Z

avx-check(z) shuffle : .

Xor
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Bottleneck 2: Checks
‘ Z ‘ Z

avx-check(z) shuffle : .

Xor

recover
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Bottleneck 2: Checks
‘ Z ‘ Z

avx-check(z) shuffle : .

Xor

recover

Checks introduce additional 55% overhead ®
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Performance overheads
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Performance overheads

15-20x  10-14x
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Performance overheads

-------------- . lower
______________ _ better

/}7@‘9/7

*

Average performance overhead is 4x
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Performance overheads

---------------- lower
________________ better

Amortized by very poor memory access pattern
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Performance overheads

DSN'16

15-20x  10-14x |

lower
better

S’bef?g /}/9{0/7‘/76
(1) Native benefits from AVX vectorization
(2) Most of time spent in mem-intensive bzero()

12



Comparison with SWIFT-R (state-of-the-art TMR approach)
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Comparison with SWIFT-R (state-of-the-art TMR approach)

9 — = —
sl s SWIFT-R
GE) s Elzar '
— 7 [ —
c O
>
E'g 6 C lower
EC_ 5L S better
SSal :
£2
S=3F -
=z o L |
1 . _|
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Comparison with SWIFT-R (state-of-the-art TMR approach)

Normalized runtime

DSN'16

(w.r.t. native)
- N W A~ O OO NN 00 O

16.3 +170%

lower
better
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Comparison with SWIFT-R (state-of-the-art TMR approach)

| lower
S | better

Elzar performs 46% worse than SWIFT-R on average ®
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Comparison with SWIFT-R (state-of-the-art TMR approach)

lower
o better

*

Dominated by memory accesses, Elzar inserts many wrappers ®
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Comparison with SWIFT-R (state-of-the-art TMR approach)

lower
,,,,,,,,,,,,,,, better

b/‘s’o,q,

*

Elzar produces 3x less instructions than SWIFT-R ©
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Motivation
Intel AVX

Design

J H § K

Evaluation

Discussion
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Bottlenecks and Proposed Solution

Problem AV X lacks certain instructions
— Need wrappers for memory accesses
— Need shuffle-xor-ptest for checks
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Bottlenecks and Proposed Solution

Problem AV X lacks certain instructions
— Need wrappers for memory accesses
— Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
- Intel's Xeon-FPGA pairing

/CPU \ /FPGA \ /Memory \
‘ addr | addr | addr ‘ addr ‘ addr
load majority voting
replication
val val T val val ‘
-/ VRN Y

\S
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Bottlenecks and Proposed Solution

Problem AV X lacks certain instructions
— Need wrappers for memory accesses
— Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
- Intel's Xeon-FPGA pairing

/CPU \ /FPGA \ /Memory \
‘ addr | addr | addr ‘ addr ‘ addr
load majority voting
replication
‘ val val T val val ‘
\S -/ L VRN Y,

Potentially 71% better than SWIFT-R

DSN'16 14



Conclusion

DSN'16 15



Conclusion

Source code —» Elzar ——» Executable

V- A
AVX f

CPU

DSN'16 15



Conclusion

Source code —» Elzar ——» Executable

V- A
AVX f

CPU

Implementation Intel AVX for triple modular redundancy

DSN'16 15



Conclusion

Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Hypothesis Less instructions — less perf overhead

DSN'16 15



Conclusion

Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Hypothesis Less instructions — less perf overhead
Outcome 46% worse than SWIFT-R
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Conclusion

Source code

[

Implementation

Hypothesis
Outcome

Discussion

DSN'16

Elzar ———» Executable

AVX f

CPU

Intel AVX for triple modular redundancy
Less instructions — less perf overhead
46% worse than SWIFT-R

With FPGA, ~71% better than SWIFT-R

15



Thank you!
dmitrii.kuvaiskii@tu-dresden.de

GitHub repo: https://github.com/tudinfse/elzar
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backup slides
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Intel Haswell CPU microarchitecture

[ Instruction Scheduler ]
port 0 port 1 l ports
! v v v 2-4,7
[ 64-bit ] 256-bit [ 64-bit ] 256-bit Memory
ALU MUL ALU FADD access
A\ 4
256-bit 256-bit
FMA ALU
port 5
*, * port 6
[ 64-bit ] 256-bit . 2
ALU ALU 64-bit
v ALU

256-bit
Shuffle
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Intel Haswell CPU microarchitecture

[ Instruction Scheduler ]
port O port 1 l ports
! v v v 2-4,7
[ 64-bit ] 256-bit [ 64-bit ] 256-bit [ Memory ]
ALU MUL ALU FADD access
\ 4 \ 4
[256-bit] [256-bit]
FMA ALU
port 5
v v
[ 64-bit ] 256-bit vport °
ALU ALU [ 64-bit ]
\ 4 ALU
256-bit
Shuffle

Intel AVX units
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Elzar: Check on Branch

Native

cmp X, y
jne truebranch
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Elzar: Check on Branch

Native

x1‘x2‘x3‘x4‘
‘y1‘y2 y3‘y4‘

cmpeq

cmp X, y
jne truebranch

ptest

jne | ja

g

true branch False branch recover
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Elzar: Check on Branch

Native

x1‘x2‘x3‘x4‘

‘y1‘y2 y3‘y4‘

cmp X, y
jne truebranch

cmpeq
‘ x1=yl | xZ=y? | x3=zy3 | xi=y4 ‘
) ptest
—| FLaGs | )2
ezl
true branch false branch recover

Impact Checks on branches introduce only 4% overhead ©
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Main Bottlenecks

Problem AVXinstruction set lacks certain instructions

— Loads/stores require extracting AVX-replicated address
* Elzar creates expensive wrappers around loads/stores
* AVX-512 introduces promising gather/scatter instructions

- AVX has only one control-flow instruction ptest
* Elzar has to insert ptest for each control-flow decision
* AVX could add emp instructions directly affecting control flow

— AVX misses integer division, integer truncation, etc...
* Elzar produces very ineffective code in these cases
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Estimation of Proposed Changes

9 —
D 8_ """""""""""""""""""""""""""""""""""""""""
£ 716
S2ef
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E2 3L
o
z 2+
1 L

s SWIFT-R
s Elzar ;
I Estimated Elzar
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mailto:dmitrii.kuvaiskii@tu-dresden.de
https://github.com/tudinfse/elzar

Estimation of Proposed Changes

9 — =

I T I s SWIFT-R |
= mm Elzar 5
=) [ s Estimated Elzar
22 6w 1 f lower
ES 5 | I e better
=<4+ - 04w :
PSR N N I ....................... _
o
z 20 m B WM I WL NN

LW TAIT1]

4 % S S,
A%V &Q? ob@ Cmﬁzyﬁké QQE? ub é%%%_ogbgoeh%? Q%y QZS n&o é%? O%Eb
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Estimation of Proposed Changes

5 16.3 ]

I T s SWIFT-R |
GEJ s Elzar 5
g5 mmms Estimated Elzar
D2 6 ol gl 1 llower
ES 5 | | f better
=<4+ - 04w -
EZ3tg W W W g NN .
o
Zz o 0f mm BB N RN O OBMRE WM -

1 e PR PR PR P e TP e PEE PR e PR |
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Estimation of Proposed Changes

lower
| § better

Ne %

*

Estimated average overhead would be 48%
(71% improvement over SWIFT-R)
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