
DSN'16

Elzar
Triple Modular Redundancy using Intel AVX

Dmitrii Kuvaiskii

Oleksii Oleksenko Pramod Bhatotia Christof Fetzer

Pascal Felber

DSN'16

Hardware Errors in the Wild

1

• Online services run in huge data centers

DSN'16

Hardware Errors in the Wild

1

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

DSN'16

Hardware Errors in the Wild

1

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• These faults can lead to arbitrary state corruptions

DSN'16

Hardware Errors in the Wild

1

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• These faults can lead to arbitrary state corruptions

„…There were a handful of messages
that had a single bit corrupted such
that the message was still intelligible,
but the system state information was
incorrect…“

DSN'16

Hardware Errors in the Wild

1

„…Corruption can occur transiently in
CPU or RAM. Guarding against such
corruptions is an important goal in
Mesa’s overall design…“

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• These faults can lead to arbitrary state corruptions

„…There were a handful of messages
that had a single bit corrupted such
that the message was still intelligible,
but the system state information was
incorrect…“

DSN'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

DSN'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance

DSN'16

Protecting Against Data Corruptions

2

☺ Tolerates arbitrary faults

☹ Pessimistic fault model

☹ High resource overheads

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance

DSN'16

Protecting Against Data Corruptions

2

☺ Tolerates arbitrary faults

☹ Pessimistic fault model

☹ High resource overheads

Principled
approaches

Ad-hoc
approaches

Checksums / AssertionsByzantine Fault Tolerance

DSN'16

Protecting Against Data Corruptions

2

☺ Tolerates arbitrary faults

☹ Pessimistic fault model

 ☹ High resource overheads

☺ Low performance overheads

☹ Only anticipated faults

☹ Manual and error-prone

Principled
approaches

Ad-hoc
approaches

Checksums / AssertionsByzantine Fault Tolerance

DSN'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance Checksums / Assertions

Triple Modular Redundancy

DSN'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance Checksums / Assertions

☺ Practical fault model

better
performance

Triple Modular Redundancy

DSN'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance Checksums / Assertions

☺ Practical fault model

☺ Disciplined protection

better
performance

better
fault coverage

Triple Modular Redundancy

DSN'16

CPU

Triple Modular Redundancy

Triple Modular Redundancy
(TMR)

Source code Executable

3

DSN'16

CPU

Triple Modular Redundancy

Triple Modular Redundancy
(TMR)

Source code Executable

3

z = add x, y

Native

DSN'16

CPU

Triple Modular Redundancy

Triple Modular Redundancy
(TMR)

Source code Executable

3

z = add x, y

Native TMR

z = add x, y
z2 = add x2, y2
z3 = add x3, y3

DSN'16

CPU

Triple Modular Redundancy

Triple Modular Redundancy
(TMR) with SIMD

Source code Executable

3

z = add x, y

Native

zwide = add xwide, ywide

TMR with SIMDTMR

z = add x, y
z2 = add x2, y2
z3 = add x3, y3

DSN'16

CPU

Triple Modular Redundancy

Triple Modular Redundancy
(TMR) with SIMD

Source code Executable

3

z = add x, y

z = add x, y
z2 = add x2, y2
z3 = add x3, y3

Native TMR

zwide = add xwide, ywide

TMR with SIMD

Idea SIMD uses less instructions less perf overhead?→

DSN'16

Research Question

4

Can we use SIMD for efficient fault tolerance?

DSN'16

Research Question

4

Can we use SIMD for efficient fault tolerance?

Implementation using Intel AVX

DSN'16

Elzar

ElzarSource code Executable

5

CPU

DSN'16

Elzar

ElzarSource code Executable

5

CPU

 AVX

Implementation Intel AVX for triple modular redundancy

DSN'16

Elzar

ElzarSource code Executable

5

CPU

 AVX

Implementation Intel AVX for triple modular redundancy

Outcome Mixed results ☹ (AVX not general-purpose)

DSN'16

Elzar

ElzarSource code Executable

5

CPU

 AVX

Implementation Intel AVX for triple modular redundancy

Outcome Mixed results ☹ (AVX not general-purpose)

Investigation Two bottlenecks in current AVX

DSN'16

 ☑ Motivation

 ☐ Intel AVX

 ☐ Design

 ☐ Evaluation

 ☐ Discussion

DSN'16

Intel AVX Background

6

DSN'16

Intel AVX Background

6

New registers
YMM0

256 bit

YMM1

YMM2

…

YMM15

64-bit 64-bit 64-bit 64-bit

DSN'16

Intel AVX Background

6

New registers
YMM0

256 bit

YMM1

YMM2

…

YMM15

64-bit 64-bit 64-bit 64-bit

New instructions
+

x1 x2 x3 x4

y1 y2 y3 y4

x1+y1 x2+y2 x3+y3 x4+y4

YMM0

YMM1

YMM2

DSN'16

AVX as free resource?

7

AVX is not actively used?

DSN'16

AVX as free resource?

unused used

AVX is not actively used?

7

DSN'16

AVX as free resource?

unused used

AVX is not actively used?

7

DSN'16

AVX as free resource?

unused used

AVX is not actively used?

7

DSN'16

AVX as free resource?

unused used

AVX is not actively used? Reuse for fault tolerance!→

7

DSN'16

 ☑ Motivation

☑ Intel AVX

 ☐ Design

 ☐ Evaluation

 ☐ Discussion

DSN'16

Fault Model

8

– Protect against transient faults in CPU
• corruptions in CPU registers

• miscomputations in CPU execution units

– Memory is protected by other means
• DRAM protected by ECC

• CPU caches protected by ECC and parity

 CPU

Memory

DSN'16

Elzar by Example

9

x = load a

z = add x, 1

Native

DSN'16

Elzar by Example

x = load a

z = add x, 1

Native

x = load a

z = add x, 1
z2 = add x2, 1
z3 = add x3, 1

majority(z, z2, z3)

TMR

9

DSN'16

Elzar by Example

x = load a

z = add x, 1

x = avx-load a

z = avx-add x, 1

avx-check(z)

Native ElzarTMR

9

x = load a

z = add x, 1
z2 = add x2, 1
z3 = add x3, 1

majority(z, z2, z3)

DSN'16

Elzar by Example

Common instructions introduce lower overhead ☺

x = load a

z = add x, 1

x = avx-load a

z = avx-add x, 1

avx-check(z)

Native ElzarTMR

9

x = load a

z = add x, 1
z2 = add x2, 1
z3 = add x3, 1

majority(z, z2, z3)

DSN'16

Elzar by Example

x = load a

z = add x, 1

x = avx-load a

z = avx-add x, 1

avx-check(z)

Native ElzarTMR

9

x = load a

z = add x, 1
z2 = add x2, 1
z3 = add x3, 1

majority(z, z2, z3)

Bottleneck 1: Memory accesses require wrappers ☹

DSN'16

Elzar by Example

x = load a

z = add x, 1

x = avx-load a

z = avx-add x, 1

avx-check(z)

Native ElzarTMR

9

x = load a

z = add x, 1
z2 = add x2, 1
z3 = add x3, 1

majority(z, z2, z3)

Bottleneck 2: Checks are expensive ☹

DSN'16

Bottleneck 1: Memory accesses

10

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 1: Memory accesses

x = avx-load a

z = avx-add x, 1

avx-check(z)

No such thing as avx-load! ☹

10

DSN'16

Bottleneck 1: Memory accesses

a a a a

x = avx-load a

z = avx-add x, 1

avx-check(z)

10

DSN'16

Bottleneck 1: Memory accesses

a a a a

a

extract

x = avx-load a

z = avx-add x, 1

avx-check(z)

10

DSN'16

RAM

Bottleneck 1: Memory accesses

load

a a a a

a

extract

x = avx-load a

z = avx-add x, 1

avx-check(z)

x

10

DSN'16

RAM

Bottleneck 1: Memory accesses

load

a a a a

a

extract

x = avx-load a

z = avx-add x, 1

avx-check(z)

x

x x x x

broadcast

10

DSN'16

RAM

Bottleneck 1: Memory accesses

10

load

a a a a

a

extract

x = avx-load a

z = avx-add x, 1

avx-check(z)

x

x x x x

broadcast

Memory accesses require wrappers ☹

DSN'16

Bottleneck 2: Checks

11

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 2: Checks

11

z1 z2 z3 z4

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 2: Checks

11

z1 z2 z3 z4

z1 z4 z3

shuffle

z2 z⊕ 1 z1 z⊕ 2 z4 z⊕ 3 z3 z⊕ 4

z2

xor

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 2: Checks

z1 z2 z3 z4

z1 z4 z3

shuffle

z2 z⊕ 1 z1 z⊕ 2 z4 z⊕ 3 z3 z⊕ 4

z2

FLAGS

xor

ptest

11

<all zeros,
 proceed>

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 2: Checks

z z z' z

shuffle

FLAGS

xor

ptest

11

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 2: Checks

z z z' z

z z z'

shuffle

z z⊕ z z⊕ z z'⊕ z' z⊕

z

FLAGS

xor

ptest

11

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 2: Checks

z z z' z

z z z'

shuffle

z z⊕ z z⊕ z z'⊕ z' z⊕

z

FLAGS

xor

ptest

recover

jne

11

x = avx-load a

z = avx-add x, 1

avx-check(z)

DSN'16

Bottleneck 2: Checks

z z z' z

z z z'

shuffle

z z⊕ z z⊕ z z'⊕ z' z⊕

z

FLAGS

xor

ptest

recover

jne

11

x = avx-load a

z = avx-add x, 1

avx-check(z)

Checks introduce additional 55% overhead ☹

DSN'16

 ☑ Motivation

☑ Intel AVX

☑ Design

 ☐ Evaluation

 ☐ Discussion

DSN'16

Performance overheads

12

DSN'16

Performance overheads

lower
better

12

DSN'16

Performance overheads

lower
better

12

DSN'16

Performance overheads

Average performance overhead is 4×

lower
better

12

DSN'16

Performance overheads

Amortized by very poor memory access pattern

lower
better

12

DSN'16

Performance overheads

(1) Native benefits from AVX vectorization
(2) Most of time spent in mem-intensive bzero()

lower
better

12

DSN'16

Comparison with SWIFT-R (state-of-the-art TMR approach)

13

DSN'16

Comparison with SWIFT-R (state-of-the-art TMR approach)

lower
better

13

DSN'16

Comparison with SWIFT-R (state-of-the-art TMR approach)

lower
better

13

DSN'16

Comparison with SWIFT-R (state-of-the-art TMR approach)

Elzar performs 46% worse than SWIFT-R on average ☹

lower
better

13

DSN'16

Comparison with SWIFT-R (state-of-the-art TMR approach)

Dominated by memory accesses, Elzar inserts many wrappers ☹

lower
better

13

DSN'16

Comparison with SWIFT-R (state-of-the-art TMR approach)

Elzar produces 3x less instructions than SWIFT-R ☺

lower
better

13

DSN'16

 ☑ Motivation

☑ Intel AVX

☑ Design

☑ Evaluation

 ☐ Discussion

DSN'16

Bottlenecks and Proposed Solution

14

Problem AVX lacks certain instructions
– Need wrappers for memory accesses

– Need shuffle-xor-ptest for checks

DSN'16

Bottlenecks and Proposed Solution

Problem AVX lacks certain instructions
– Need wrappers for memory accesses

– Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
– Intel's Xeon-FPGA pairing

14

DSN'16

Bottlenecks and Proposed Solution

Problem AVX lacks certain instructions
– Need wrappers for memory accesses

– Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
– Intel's Xeon-FPGA pairing

CPU

addr addr addr addr

val val val val

val

FPGA Memory

addr

majority votingload

replication

14

DSN'16

Bottlenecks and Proposed Solution

Problem AVX lacks certain instructions
– Need wrappers for memory accesses

– Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
– Intel's Xeon-FPGA pairing

Potentially 71% better than SWIFT-R

14

CPU

addr addr addr addr

val val val val

val

FPGA Memory

addr

majority votingload

replication

DSN'16

Conclusion

15

DSN'16

Conclusion

ElzarSource code Executable

CPU

 AVX

15

DSN'16

Conclusion

ElzarSource code Executable

CPU

 AVX

Implementation Intel AVX for triple modular redundancy

15

DSN'16

Conclusion

ElzarSource code Executable

CPU

 AVX

Implementation Intel AVX for triple modular redundancy

Hypothesis Less instructions → less perf overhead

15

DSN'16

Conclusion

ElzarSource code Executable

CPU

 AVX

Implementation Intel AVX for triple modular redundancy

Hypothesis Less instructions → less perf overhead

Outcome 46% worse than SWIFT-R

15

DSN'16

Conclusion

ElzarSource code Executable

CPU

 AVX

Implementation Intel AVX for triple modular redundancy

Hypothesis Less instructions → less perf overhead

Outcome 46% worse than SWIFT-R

Discussion With FPGA, ~71% better than SWIFT-R

15

DSN'16

Thank you!
dmitrii.kuvaiskii@tu-dresden.de

GitHub repo: https://github.com/tudinfse/elzar

DSN'16

backup slides

DSN'16

Intel Haswell CPU microarchitecture

Instruction Scheduler

64-bit
ALU

256-bit
MUL

256-bit
FMA

64-bit
ALU

256-bit
FADD

256-bit
ALU

64-bit
ALU

64-bit
ALU

256-bit
ALU

256-bit
Shuffle

Memory
access

port 0 port 1

port 5

port 6

ports
2-4,7

DSN'16

Intel Haswell CPU microarchitecture

Instruction Scheduler

64-bit
ALU

256-bit
MUL

256-bit
FMA

64-bit
ALU

256-bit
FADD

256-bit
ALU

64-bit
ALU

64-bit
ALU

256-bit
ALU

256-bit
Shuffle

Memory
access

port 0 port 1

port 5

port 6

ports
2-4,7

 Intel AVX units

DSN'16

Elzar: Check on Branch

cmp x, y
jne truebranch

Native

DSN'16

Elzar: Check on Branch

x1 x2 x3 x4

y2 y3 y4

x1=y1 x2=y2 x3=y3 x4=y4

y1

FLAGS

ptest

recover

ja

cmp x, y
jne truebranch

Native

cmpeq

true branch false branch

jne

je

DSN'16

Elzar: Check on Branch

x1 x2 x3 x4

y2 y3 y4

x1=y1 x2=y2 x3=y3 x4=y4

y1

FLAGS

ptest

recover

ja

cmp x, y
jne truebranch

Native

cmpeq

true branch false branch

jne

je

Impact Checks on branches introduce only 4% overhead ☺

DSN'16

Main Bottlenecks

Problem AVX instruction set lacks certain instructions

– Loads/stores require extracting AVX-replicated address
• Elzar creates expensive wrappers around loads/stores

• AVX-512 introduces promising gather/scatter instructions

– AVX has only one control-flow instruction ptest
• Elzar has to insert ptest for each control-flow decision

• AVX could add cmp instructions directly affecting control flow

– AVX misses integer division, integer truncation, etc…
• Elzar produces very ineffective code in these cases

DSN'16

Estimation of Proposed Changes

lower
better

mailto:dmitrii.kuvaiskii@tu-dresden.de
https://github.com/tudinfse/elzar

DSN'16

Estimation of Proposed Changes

lower
better

DSN'16

Estimation of Proposed Changes

lower
better

DSN'16

Estimation of Proposed Changes

Estimated average overhead would be 48%
(71% improvement over SWIFT-R)

lower
better

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

