Elzar
Triple Modular Redundancy using Intel AVX

Dmitrii Kuvaiskii
Oleksii Oleksenko Pramod Bhatotia Christof Fetzer Pascal Felber

n
TECHNISCHE

UNIVERSITAT ml
DRESDEN '

UNIVERSITE DE
NEUCHATEL

DSN'16

Hardware Errors in the Wild

* Online services run in huge data centers Go g|€

dMazon

== Microsoft

DSN'16 1

Hardware Errors in the Wild

* Online services run in huge data centers Go g|€
* Hardware Faults are the norm rather than the exception amazon

== Microsoft

DSN'16 1

Hardware Errors in the Wild

* Online services run in huge data centers Go g|e
* Hardware Faults are the norm rather than the exception amazon
* These faults can lead to arbitrary state corruptions

== Microsoft

DSN'16 1

Hardware Errors in the Wild

* Online services run in huge data centers
* Hardware faults are the norm rather than the exception

* These faults can lead to arbitrary state corruptions

amazon
webservices SERVICE HEALTH DASHBOARD

Amazon Web Services » Service Health Dashboard » Amazon S3 Availability Event: July 20, 2008

Amazon S3 Availability Event: July 20, 2008

We wanted to provide some additional detail about the problem we experienced on Sunday, July 20th.

»...There were a handful of messages
that had a single bit corrupted such
that the message was still intelligible,
but the system state information was
incorrect...”

DSN'16

Google

dMazon

Microsoft

Hardware Errors in the Wild

* Online services run in huge data centers Go g|€

* Hardware Faults are the norm rather than the exception amazon
* These faults can lead to arbitrary state corruptions - .
m Microsoft

amazon
webservices SERVICE HEALTH DASHBOARD

Amazon Web Services » Service Health Dashboard » Amazon S3 Availability Event: July 20, 2008

Amazon S3 Availability Event: July 20, 2008

We wanted to provide some additional detail about the problem we experienced on Sunday, July 20th.

Mesa: Geo-Replicated, Near Real-Time, Scalable Data

Warehousing
»...There were a handful of messages
that had a single bit corrupted SUCh Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan
e o . . Kevin Lai, Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal
that the message was still intelligible, Sanjay Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddigi, David Jones
. . Jeff Shute, Andrey Gubarev, Shivakumar Venkataraman, Divyakant Agrawal
but the system state information was Google, Inc.

incorrect...” : . .
»...Corruption can occur transiently in

CPU or RAM. Guarding against such

corruptions is an important goal in
Mesa’s overall design..."

DSN'16

Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
- s

DSN'16 2

Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
- s

Byzantine Fault Tolerance

DSN'16 2

Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
- s

Byzantine Fault Tolerance

© Tolerates arbitrary faults
® Pessimistic fault model

@ High resource overheads

DSN'16 2

Protecting Against Data Corruptions

Principled Ad-hoc

approaches approaches
- s

Byzantine Fault Tolerance Checksums / Assertions

© Tolerates arbitrary faults
@ Pessimistic fault model

® High resource overheads

DSN'16

Protecting Against Data Corruptions

Principled Ad-hoc

approaches approaches
- s

Byzantine Fault Tolerance Checksums / Assertions

© Tolerates arbitrary faults
@ Pessimistic fault model

® High resource overheads

DSN'16

© Low performance overheads
@ Only anticipated faults
@ Manual and error-prone

Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
- s

Byzantine Fault Tolerance

Checksums / Assertions

Triple Modular Redundancy

DSN'16

Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
- s

Byzantine Fault Tolerance Checksums / Assertions

Triple Modular Redundancy
better

performance

| © Practical fault model

DSN'16

Protecting Against Data Corruptions

Principled Ad-hoc
approaches approaches
- s

Byzantine Fault Tolerance Checksums / Assertions

Triple Modular Redundancy
better

performance

| © Practical fault model better
fault coverage

© Disciplined protection |

DSN'16 2

Triple Modular Redundancy

Source code _,| Triple Modular Redundancy
(TMR)

——» Executable

:;_

[

CPU

DSN'16 3

Triple Modular Redundancy

Source code _,| Triple Modular Redundancy
(TMR)

——» Executable

:;_

[

CPU

Native

z =add x, vy

DSN'16 3

Triple Modular Redundancy

Source code _,| Triple Modular Redundancy > Executable
. (TMR)
CPU
Native TMR
z =add x, vy z =add x, vy
z; = add x;, y»

add X3, V3

N
w
I

DSN'16

Triple Modular Redundancy

Triple Modular Redundancy
Source code . ——» E tabl
> (TMR) with SIMD xecitabie

B 5

CPU

Native TMR TMR with SIMD

z =add x, vy z =add x, vy Zwide = add Xuwide, VYwide
Zy = add X2, VY>
z3 = add X3, y3

DSN'16

Triple Modular Redundancy

Source code

> (TMR) with SIMD

Triple Modular Redundancy ‘

Executable

é.

y
CPU
Native TMR TMR with SIMD
z =add x, vy z =add x, vy Zwide = add Xuwide, VYwide
z; = add x;, y»
z3 = add x3, y3
Idea SIMD uses less instructions = less perf overhead?

DSN'16

Research Question

Can we use SIMD for efficient Fault tolerance?

DSN'16 4

Research Question

Can we use SIMD for efficient Fault tolerance?

Implementation using Intel AVX

DSN'16 4

Source code —» Elzar ——» Executable

£ ~ é—

CPU

DSN'16 5

Source code —» Elzar ——» Executable

V- A
AVX f

CPU

Implementation Intel AVX for triple modular redundancy

DSN'16 5

Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Outcome Mixed results @ (AVX not general-purpose)

DSN'16 5

Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Outcome Mixed results @ (AVX not general-purpose)
Investigation Two bottlenecks in current AVX

DSN'16 5

Y1 Motivation
Intel AVX

Design

Evaluation

Discussion

DSN'16

Intel AVX Background

DSN'16 6

Intel AVX Background

256 bit
New registers < -
YMMO

YMM1
YMM2

~ ™~

| 64-bit | 6a-bit | e4-bit | 64-bit |

DSN'16

Intel AVX Background

256 bit
New registers < -
YMMO

YMM1
YMM2

~ ™~

| 64-bit | 6a-bit | e4-bit | 64-bit |

New instructions X1 X2 X3 X4 YMMO

Y1 y2 y3 Yaq YMM1

| X1+Y1 | Xaty2 | X3+y3 | X4tY4 |YMM2

DSN'16

AVX as free resource?

AVX is not actively used?

DSN'16 7

AVX as free resource?

AVX is not actively used?

unused used

histogram I
kmeans |
linear regression I
matrix multiply :
|
I

Phoenix

pca
string match
wordcount | L]
blackscholes
dedup

ferret

I
I
I
fluidanimate I
|
I
I

PARSEC

streamcluster
swaptions

x2e4]
memcached I
sqlite3 I
apache |

Apps

-20% 0% 20% 40% 60%

DSN'16 7

AVX as free resource?

AVX is not actively used?

unused used

histogram
kmeans

linear regression
matrix multiply
pca

string match
‘wordcount |
blackscholes
dedup

ferret
fluidanimate
streamcluster
swaptions
x264 |
memcached
sqlite3

apache

PARSEC Phoenix

Apps

-20% 0% 20% 40% 60%

DSN'16 7

AVX as free resource?

AVX is not actively used?

unused used

histogram
kmeans

linear regression
matrix multiply
pca

string match
‘wordcount |
blackscholes
dedup

ferret
fluidanimate
streamcluster
swaptions
x264 |
memcached
sqlite3

apache

PARSEC Phoenix

Apps

-20% 0% 20% 40% 60%

DSN'16 7

AVX as free resource?

AVX is not actively used? — Reuse for fault tolerance!

unused used

histogram
kmeans

linear regression
matrix multiply
pca

string match
‘wordcount |
blackscholes
dedup

ferret
fluidanimate
streamcluster
swaptions
x264 |
@ memcached

Q sqlite3

< apache

Phoenix

PARSEC

-20% 0% 20% 40% 60%

DSN'16 7

/] Motivation
/] Intel AVX
Design

Evaluation

Discussion

DSN'16

- Protect against transient Faults in CPU
« corruptions in CPU registers CPU

* miscomputations in CPU execution units

- Memory is protected by other means
* DRAM protected by ECC Memory
* CPU caches protected by ECC and parity

DSN'16 8

Elzar by Example

Native

x = load a
z =add x, 1

DSN'16 9

Elzar by Example

Native TMR

Xx = load a Xx = load a

z =add x, 1 z =add x, 1
Zy = add X2, 1
Z3 = add X3, 1

majority(z, z,, z3)

DSN'16 9

Elzar by Example

Native TMR Elzar

Xx = load a x = load a X = avx-load a

z =add x, 1 z =add x, 1 z = avx-add x, 1
Zy = add X2, 1
Z3 = add X3, 1
majority(z, z,, z3) avx-check(z)

DSN'16 9

Elzar by Example

Native TMR Elzar

z =add x, 1 z =add x, 1 z = avx-add x, 1
Zy = add X2, 1
Z3 = add X3, 1

Common instructions introduce lower overhead ©

DSN'16 9

Elzar by Example

Native TMR Elzar

x = load a x = load a X = avx-load a

Bottleneck 1: Memory accesses require wrappers @

DSN'16 9

Elzar by Example

Native TMR Elzar

majority(z, z,, z3) avx-check(z)

Bottleneck 2: Checks are expensive ®

DSN'16 9

Bottleneck 1: Memory accesses

X = avx-load a

DSN'16 10

Bottleneck 1: Memory accesses

x = avx-load a ' No such thing as avx-load! ®

DSN'16 10

Bottleneck 1: Memory accesses

X = avx-load a

DSN'16 10

Bottleneck 1: Memory accesses

X = avx-load a

DSN'16 10

Bottleneck 1: Memory accesses

X

avx-load a

DSN'16

RAM

10

Bottleneck 1: Memory accesses

X = avx-load a

extract

[]
a >

RAM

broadcast

XX‘X‘X‘

DSN'16

10

Bottleneck 1: Memory accesses

X

avx-load a

extract

DSN'16

[]
a >

RAM

broadcast

XX‘X‘X‘

Memory accesses require wrappers @

10

Bottleneck 2: Checks

avx-check(z)

DSN'16 11

Bottleneck 2: Checks

‘21‘22‘23‘24‘

avx-check(z)

DSN'16 11

Bottleneck 2: Checks

‘21‘22‘23‘24‘
avx-check(z) shuffle : L :

Zo Z1 Z4 Z3
o T T T
A 4 v Vv A 4

Z2,0z9 | 2192, ‘ 24923 | Z3@2Z4

DSN'16 11

Bottleneck 2: Checks

‘ Z1 ‘ Z2 ‘ Z3 ‘ Z4 ‘
avx-check(z) shuffle : L :

Zo Z1 Z4 Z3
o T T T
A 4 v Vv A 4

Z,®24 ‘ 2192z; | Z4®23 ‘ 23024

ptest

| FLAGs |
l<all Zeros,

proceed>

DSN'16 11

Bottleneck 2: Checks

avx-check(z)

Bottleneck 2: Checks
‘ Z ‘ Z

avx-check(z) shuffle : .

Xor

DSN'16 11

Bottleneck 2: Checks
‘ Z ‘ Z

avx-check(z) shuffle : .

Xor

recover

DSN'16 11

Bottleneck 2: Checks
‘ Z ‘ Z

avx-check(z) shuffle : .

Xor

recover

Checks introduce additional 55% overhead ®

DSN'16 11

Y1 Motivation
/1 Intel AVX

/] Design

Evaluation

Discussion

DSN'16

Performance overheads

DSN'16 12

Performance overheads

9 F .
© 8 -
£
£ /|]
E'-%G— ___ e i lower
S =S S S | |} better
N =
S5 4f :
E2 3L i
o
Z 2t 1

1, _|

DSN'16 12

Performance overheads

15-20x 10-14x

0 F -
© 8f .
£
=LA [L]
2%6— ___ e _ lower
B gl g BB] better
N 4 :
SC 41 :
cz..m B BEERE 0 mM |
@)
Z 2 r -
1

DSN'16 12

Performance overheads

-------------- . lower
______________ _ better

/}7@‘9/7

*

Average performance overhead is 4x

DSN'16 5

Performance overheads

---------------- lower
________________ better

Amortized by very poor memory access pattern

DSN'16 12

Performance overheads

DSN'16

15-20x 10-14x |

lower
better

S’bef?g /}/9{0/7‘/76
(1) Native benefits from AVX vectorization
(2) Most of time spent in mem-intensive bzero()

12

Comparison with SWIFT-R (state-of-the-art TMR approach)

DSN'16 13

Comparison with SWIFT-R (state-of-the-art TMR approach)

9 — = —
sl s SWIFT-R
GE) s Elzar '
— 7 [—
c O
>
E'g 6 C lower
EC_ 5L S better
SSal :
£2
S=3F -
=z o L |
1 . _|

DSN'16 13

Comparison with SWIFT-R (state-of-the-art TMR approach)

Normalized runtime

DSN'16

(w.r.t. native)
- N W A~ O OO NN 00 O

16.3 +170%

lower
better

13

Comparison with SWIFT-R (state-of-the-art TMR approach)

| lower
S | better

Elzar performs 46% worse than SWIFT-R on average ®

DSN'16 13

Comparison with SWIFT-R (state-of-the-art TMR approach)

lower
o better

*

Dominated by memory accesses, Elzar inserts many wrappers ®

DSN'16 13

Comparison with SWIFT-R (state-of-the-art TMR approach)

lower
,,,,,,,,,,,,,,, better

b/‘s’o,q,

*

Elzar produces 3x less instructions than SWIFT-R ©

DSN'16 13

Motivation
Intel AVX

Design

J H § K

Evaluation

Discussion

DSN'16

Bottlenecks and Proposed Solution

Problem AV X lacks certain instructions
— Need wrappers for memory accesses
— Need shuffle-xor-ptest for checks

DSN'16 14

Bottlenecks and Proposed Solution

Problem AV X lacks certain instructions
— Need wrappers for memory accesses
— Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
- Intel's Xeon-FPGA pairing

DSN'16 14

Bottlenecks and Proposed Solution

Problem AV X lacks certain instructions
— Need wrappers for memory accesses
— Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
- Intel's Xeon-FPGA pairing

/CPU \ /FPGA \ /Memory \
‘ addr | addr | addr ‘ addr ‘ addr
load majority voting
replication
val val T val val ‘
-/ VRN Y

\S

DSN'16 14

Bottlenecks and Proposed Solution

Problem AV X lacks certain instructions
— Need wrappers for memory accesses
— Need shuffle-xor-ptest for checks

Solution Offload to FPGA accelerator
- Intel's Xeon-FPGA pairing

/CPU \ /FPGA \ /Memory \
‘ addr | addr | addr ‘ addr ‘ addr
load majority voting
replication
‘ val val T val val ‘
\S -/ L VRN Y,

Potentially 71% better than SWIFT-R

DSN'16 14

Conclusion

DSN'16 15

Conclusion

Source code —» Elzar ——» Executable

V- A
AVX f

CPU

DSN'16 15

Conclusion

Source code —» Elzar ——» Executable

V- A
AVX f

CPU

Implementation Intel AVX for triple modular redundancy

DSN'16 15

Conclusion

Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Hypothesis Less instructions — less perf overhead

DSN'16 15

Conclusion

Source code — Elzar —» Executable
AVX f
CPU
Implementation Intel AVX for triple modular redundancy
Hypothesis Less instructions — less perf overhead
Outcome 46% worse than SWIFT-R

DSN'16 15

Conclusion

Source code

[

Implementation

Hypothesis
Outcome

Discussion

DSN'16

Elzar ———» Executable

AVX f

CPU

Intel AVX for triple modular redundancy
Less instructions — less perf overhead
46% worse than SWIFT-R

With FPGA, ~71% better than SWIFT-R

15

Thank you!
dmitrii.kuvaiskii@tu-dresden.de

GitHub repo: https://github.com/tudinfse/elzar

DSN'16

backup slides

DSN'16

Intel Haswell CPU microarchitecture

[Instruction Scheduler]
port 0 port 1 l ports
! v v v 2-4,7
[64-bit] 256-bit [64-bit] 256-bit Memory
ALU MUL ALU FADD access
A\ 4
256-bit 256-bit
FMA ALU
port 5
*, * port 6
[64-bit] 256-bit . 2
ALU ALU 64-bit
v ALU

256-bit
Shuffle

DSN'16

Intel Haswell CPU microarchitecture

[Instruction Scheduler]
port O port 1 l ports
! v v v 2-4,7
[64-bit] 256-bit [64-bit] 256-bit [Memory]
ALU MUL ALU FADD access
\ 4 \ 4
[256-bit] [256-bit]
FMA ALU
port 5
v v
[64-bit] 256-bit vport °
ALU ALU [64-bit]
\ 4 ALU
256-bit
Shuffle

Intel AVX units

DSN'16

Elzar: Check on Branch

Native

cmp X, y
jne truebranch

DSN'16

Elzar: Check on Branch

Native

x1‘x2‘x3‘x4‘
‘y1‘y2 y3‘y4‘

cmpeq

cmp X, y
jne truebranch

ptest

jne | ja

g

true branch False branch recover

DSN'16

Elzar: Check on Branch

Native

x1‘x2‘x3‘x4‘

‘y1‘y2 y3‘y4‘

cmp X, y
jne truebranch

cmpeq
‘ x1=yl | xZ=y? | x3=zy3 | xi=y4 ‘
) ptest
—| FLaGs |)2
ezl
true branch false branch recover

Impact Checks on branches introduce only 4% overhead ©

DSN'16

Main Bottlenecks

Problem AVXinstruction set lacks certain instructions

— Loads/stores require extracting AVX-replicated address
* Elzar creates expensive wrappers around loads/stores
* AVX-512 introduces promising gather/scatter instructions

- AVX has only one control-flow instruction ptest
* Elzar has to insert ptest for each control-flow decision
* AVX could add emp instructions directly affecting control flow

— AVX misses integer division, integer truncation, etc...
* Elzar produces very ineffective code in these cases

DSN'16

Estimation of Proposed Changes

9 —
D 8_ """
£ 716
S2ef
=S 4
E2 3L
o
z 2+
1 L

s SWIFT-R
s Elzar ;
I Estimated Elzar

DSN'16

lower
better

mailto:dmitrii.kuvaiskii@tu-dresden.de
https://github.com/tudinfse/elzar

Estimation of Proposed Changes

9 — =

I T I s SWIFT-R |
= mm Elzar 5
=) [s Estimated Elzar
22 6w 1 f lower
ES 5 | I e better
=<4+ - 04w :
PSR N N I _
o
z 20 m B WM I WL NN

LW TAIT1]

4 % S S,
A%V &Q? ob@ Cmﬁzyﬁké QQE? ub é%%%_ogbgoeh%? Q%y QZS n&o é%? O%Eb

DSN'16

Estimation of Proposed Changes

5 16.3]

I T s SWIFT-R |
GEJ s Elzar 5
g5 mmms Estimated Elzar
D2 6 ol gl 1 llower
ES 5 | | f better
=<4+ - 04w -
EZ3tg W W W g NN .
o
Zz o 0f mm BB N RN O OBMRE WM -

1 e PR PR PR P e TP e PEE PR e PR |

DSN'16

Estimation of Proposed Changes

lower
| § better

Ne %

*

Estimated average overhead would be 48%
(71% improvement over SWIFT-R)

DSN'16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

