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Amazon S3 Availability Event
http://status.aws.amazon.com/s3-20080720.html

Data corruption with Opteron CPUs
https://bugzilla.kernel.org/show_bug.cgi?id=7768

Defective S3 load balancer
https://forums.aws.amazon.com/thread.jspa?threadID=22709

Google's Mesa Data Warehousing System
„ …corruption can occur transiently in CPU or RAM. Guarding 
against such corruptions is an important goal in Mesa’s overall 
design… “

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• Focus on faults that result in arbitrary data corruptions

http://status.aws.amazon.com/s3-20080720.html
https://bugzilla.kernel.org/show_bug.cgi?id=7768
https://forums.aws.amazon.com/thread.jspa?threadID=22709
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Protecting Against Data Corruptions

2

Principled 
approaches

Ad-hoc 
approaches

Byzantine Fault Tolerance Checksums / Assertions

Hardening Techniques

✔ Practical fault model

✔ Disciplined protection

better 
performance

better 
fault coverage
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Design Goals for HAFT

4

✔ Transparent
• No changes in source code

• Shared-memory programming model

✔ Practical
• Multithreaded programs

• Fault detection and fault recovery

✔ Efficient
• No spare cores, no deterministic execution

• No memory overhead (rely on ECC)
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Fault Model

6

–  Protect against transient faults in CPU
• corruptions in CPU registers

• miscomputations in CPU execution units

–  Memory is protected by other means
• DRAM protected by ECC

• CPU caches protected by ECC and parity

 CPU

Memory
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z  = add x, y

store z, 0x10
 

 

z  = add x,  y
z2 = add x2, y2
d  = cmp neq z, z2
br d, crash
store z, 0x10
 

 

tx-begin
 

z  = add x,  y
z2 = add x2, y2
d  = cmp neq z, z2
br d, tx-abort
store z, 0x10
 

tx-end

Native
Transactification
Tx

7

Instr Level Replication
ILR
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Challenge of Transactification

Commodity HTM (Intel TSX) implementations
•  for synchronization not fault recovery

•  for small-sized well-behaved transactions

Need right size of HW transactions
•  large and rare  high abort rate→

•  small and frequent  high perf overhead→

Solution: dynamic transaction boundaries
•  track number of instructions executed

•  start new transaction whenever exceed predefined threshold

L1 cache

 CPU
HTM
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– Optimizations
1. Shared memory accesses

2. Lock elision

– Evaluation

See the paper for
other optimizations
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d  = cmp neq adr, adr2
br d, xabort
val = load atomic adr val  = load adr

val2 = load adr2

• Motivation   Checks on memory accesses are expensive
        – 40% instructions are loads and stores

• Idea   Distinguish atomic and non-atomic accesses
        

• Impact   Up to 40% better performance

Explicit atomic Protected non-atomic
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...
lock_wrapper(&l)
counter++
unlock_wrapper(&l)
...

Tiny critical section

• Motivation   Small critical sections are expensive
        – 3 transactions for each

• Idea   Use Tx for recovery and  lock elision
        

• Impact   Up to 30% better throughput
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– Optimizations
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1. Performance overheads

2. Reliability

3. Real-world application: Memcached

See the paper for
more results
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Availability 2500 fault injections per benchmark

Injected faults:  91.2% corrected
(best-effort nature of Intel TSX)

higher is 
better
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Summary

HAFT provides fault tolerance against arbitrary
data corruptions caused by transient CPU faults

✔ Transparent
• no changes in source code
• general programming model

✔ Practical
• Shared-memory multithreaded programs
• Fault detection and fault recovery

✔ Efficient
• Low performance overhead
• Relies on commodity-hardware HTM (Intel TSX)

14
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Thank you!
dmitrii.kuvaiskii@tu-dresden.de

Source code available: https://github.com/tudinfse/haft

https://github.com/tudinfse/haft
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(Un)Reliability of CPUs

[Designing Reliable Systems from Unreliable Components, S. Borkar, Micro'05]
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Performance evaluation

Average performance overhead is 2× (less with more threads)
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Memcached comparison SEI (Behrens et al, NSDI'2015)

HAFT outperforms SEI by 30-40%
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HAFT: Run-time Execution

store

load

Memory

check

check

tx-end

tx-begin

Original data flow

Shadow data flow

L1 cache
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Comparison with State-of-the-Art

Approach Resources Multith. Perf overhead Fault coverage

PLR [8]
DSN'07

2-3× memory usage
2-3× spare cores

No Detection: 16.9%
Recovery: 41.1%

Detection: very high
Recovery: N/A

SWIFT [6]
CGO'05

 – No Detection: 41%
Recovery: N/A

Detection: high
Recovery: N/A

Shoestring [5]
ASPLOS'10

 – No Detection: 15-
30%
Recovery: N/A

Detection: medium
Recovery: N/A

DAFT [10]
PACT'10

2× spare cores No Detection: 38%
Recovery: N/A

Detection: high
Recovery: N/A

RAFT [9]
CGO'12

2× memory usage
2× spare cores

No Detection: 3%
Recovery: N/A

Detection: very high
Recovery: N/A

RomainMT [4]
EMSOFT'14

2-3× memory usage
2-3× spare cores

Yes Detection: 13-
22%
Recovery: 24-
65%

Detection: N/A
Recovery: N/A

SEI [2]
NSDI'15

 – 
(manual code changes)

Yes Detection: 20-
50%
Recovery: N/A

Detection: very high
Recovery: N/A

HAFT
(this work)

 – Yes Detection: 52%
Recovery: 89%

Detection: high
Recovery: high
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Hardening

Hardening TechniqueSource code executable

Limitations:
  ✘ Non-transparent

• Manual changes in source code [1] [2]
• Specific languages / programming models [3]

  ✘ Impractical
• Only single-threaded programs [1] [5-10]
• Only fail-stop execution [1] [2] [5] [6] [8-10]

  ✘ Inefficient
• Requires spare cores / deterministic execution [4] [8-10]
• Memory overhead [8] [9]

CPUCPU



Eurosys'16

References

[1]  M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini. 
  Practical hardening of crash-tolerant systems. ATC'12

 

[2]  D. Behrens, M. Serafini, S. Arnautov, F. P. Junqueira, and C. Fetzer.
  Scalable error isolation for distributed systems. NSDI'15

 

[3]  P. Bhatotia, A. Wieder, R. Rodrigues, F. Junqueira, and B. Reed.
  Reliable data-center scale computations. LADIS'10

 

[4]  B. Döbel and H. Härtig.
  Can we put concurrency back into redundant multithreading? EMSOFT'14

 

[5]  S. Feng, S. Gupta, A. Ansari, and S. Mahlke.
  Shoestring: Probabilistic soft error reliability on the cheap. ASPLOS'10

 

[6]  G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
  SWIFT: Software implemented fault tolerance. CGO'05

 

[7]  G. A. Reis, J. Chang, and D. I. August.
  Automatic instruction-level software-only recovery. Micro'07

 

[8]  A. Shye, T. Moseley, V. Reddi, J. Blomstedt, and D. Connors.
  Using process-level redundancy to exploit multiple cores for transient fault tolerance. DSN'07

[9]  Y. Zhang, S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke, and D. I. August.
  Runtime asynchronous fault tolerance via speculation. CGO'12

[10]  Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August.
  DAFT: Decoupled acyclic fault tolerance. PACT'10


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

