
Eurosys'16

HAFT
Hardware-Assisted Fault Tolerance

Dmitrii Kuvaiskii Rasha Faqeh

Pramod Bhatotia Christof Fetzer

Technische Universität Dresden

Pascal Felber

Université de Neuchâtel

Eurosys'16

Hardware Errors in the Wild

1

• Online services run in huge data centers

Eurosys'16

Hardware Errors in the Wild

1

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

Eurosys'16

Hardware Errors in the Wild

1

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• Focus on faults that result in arbitrary data corruptions

Eurosys'16

Hardware Errors in the Wild

1

Amazon S3 Availability Event
http://status.aws.amazon.com/s3-20080720.html

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• Focus on faults that result in arbitrary data corruptions

http://status.aws.amazon.com/s3-20080720.html

Eurosys'16

Hardware Errors in the Wild

1

Amazon S3 Availability Event
http://status.aws.amazon.com/s3-20080720.html

Data corruption with Opteron CPUs
https://bugzilla.kernel.org/show_bug.cgi?id=7768

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• Focus on faults that result in arbitrary data corruptions

http://status.aws.amazon.com/s3-20080720.html
https://bugzilla.kernel.org/show_bug.cgi?id=7768

Eurosys'16

Hardware Errors in the Wild

1

Amazon S3 Availability Event
http://status.aws.amazon.com/s3-20080720.html

Data corruption with Opteron CPUs
https://bugzilla.kernel.org/show_bug.cgi?id=7768

Defective S3 load balancer
https://forums.aws.amazon.com/thread.jspa?threadID=22709

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• Focus on faults that result in arbitrary data corruptions

http://status.aws.amazon.com/s3-20080720.html
https://bugzilla.kernel.org/show_bug.cgi?id=7768
https://forums.aws.amazon.com/thread.jspa?threadID=22709

Eurosys'16

Hardware Errors in the Wild

1

Amazon S3 Availability Event
http://status.aws.amazon.com/s3-20080720.html

Data corruption with Opteron CPUs
https://bugzilla.kernel.org/show_bug.cgi?id=7768

Defective S3 load balancer
https://forums.aws.amazon.com/thread.jspa?threadID=22709

Google's Mesa Data Warehousing System
„ …corruption can occur transiently in CPU or RAM. Guarding
against such corruptions is an important goal in Mesa’s overall
design… “

• Online services run in huge data centers

• Hardware faults are the norm rather than the exception

• Focus on faults that result in arbitrary data corruptions

http://status.aws.amazon.com/s3-20080720.html
https://bugzilla.kernel.org/show_bug.cgi?id=7768
https://forums.aws.amazon.com/thread.jspa?threadID=22709

Eurosys'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Eurosys'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance

Eurosys'16

Protecting Against Data Corruptions

2

✔ Tolerates arbitrary faults

✘ Pessimistic fault model

✘ High resource overheads

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance

Eurosys'16

Protecting Against Data Corruptions

2

✔ Tolerates arbitrary faults

✘ Pessimistic fault model

✘ High resource overheads

Principled
approaches

Ad-hoc
approaches

Checksums / AssertionsByzantine Fault Tolerance

Eurosys'16

Protecting Against Data Corruptions

2

✔ Tolerates arbitrary faults

✘ Pessimistic fault model

✘ High resource overheads

✔ Low performance overheads

✘ Only anticipated faults

✘ Manual and error-prone

Principled
approaches

Ad-hoc
approaches

Checksums / AssertionsByzantine Fault Tolerance

Eurosys'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance Checksums / Assertions

Hardening Techniques

Eurosys'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance Checksums / Assertions

Hardening Techniques

✔ Practical fault model

better
performance

Eurosys'16

Protecting Against Data Corruptions

2

Principled
approaches

Ad-hoc
approaches

Byzantine Fault Tolerance Checksums / Assertions

Hardening Techniques

✔ Practical fault model

✔ Disciplined protection

better
performance

better
fault coverage

Eurosys'16

Hardening

Hardening TechniqueSource code Executable

3

 CPU

Hardening Technique

Eurosys'16

Hardening

Hardening TechniqueSource code Executable

3

 CPU

Limitations:

Eurosys'16

Hardening

Hardening TechniqueSource code Executable

3

 CPU

Limitations:
 ✘ Non-transparent

• Manual changes in source code
• Specific languages / programming models

Eurosys'16

Hardening

Hardening TechniqueSource code Executable

3

 CPU

Limitations:
 ✘ Non-transparent

• Manual changes in source code
• Specific languages / programming models

 ✘ Impractical
• Only single-threaded programs
• Only fail-stop execution

Eurosys'16

Hardening

Hardening TechniqueSource code Executable

Limitations:
 ✘ Non-transparent

• Manual changes in source code
• Specific languages / programming models

 ✘ Impractical
• Only single-threaded programs
• Only fail-stop execution

 ✘ Inefficient
• Requires spare cores / deterministic execution
• Memory overhead

CPUCPU

3

Eurosys'16

Design Goals for HAFT

4

✔ Transparent

✔ Practical

✔ Efficient

Eurosys'16

Design Goals for HAFT

4

✔ Transparent
• No changes in source code

• Shared-memory programming model

✔ Practical

✔ Efficient

Eurosys'16

Design Goals for HAFT

4

✔ Transparent
• No changes in source code

• Shared-memory programming model

✔ Practical
• Multithreaded programs

• Fault detection and fault recovery

✔ Efficient

Eurosys'16

Design Goals for HAFT

4

✔ Transparent
• No changes in source code

• Shared-memory programming model

✔ Practical
• Multithreaded programs

• Fault detection and fault recovery

✔ Efficient
• No spare cores, no deterministic execution

• No memory overhead (rely on ECC)

Eurosys'16

– Motivation

– Design

– Optimizations

– Evaluation

Eurosys'16

HAFT

HAFT Compiler
Resilient

executable

5

Source code

Eurosys'16

HAFT

HAFT Compiler

ILR

Resilient
executable

5

Source code

Eurosys'16

HAFT

HAFT Compiler

ILR

Resilient
executable

Instruction Level Replication
for fault detection

5

Source code

Eurosys'16

HAFT

HAFT Compiler

ILR +

Resilient
executable

Instruction Level Replication
for fault detection

5

Source code

Eurosys'16

HAFT

HAFT Compiler

ILR Tx+

Resilient
executable

Instruction Level Replication
for fault detection

5

Source code

Eurosys'16

HAFT

HAFT Compiler

ILR Tx+

Resilient
executable

Instruction Level Replication
for fault detection

Transactification
for fault recovery

5

Source code

Eurosys'16

HAFT

HAFT Compiler

ILR Tx+

 CPU
HTM

Resilient
executable

Instruction Level Replication
for fault detection

Transactification
for fault recovery

5

Source code

Eurosys'16

Fault Model

6

Eurosys'16

Fault Model

6

– Protect against transient faults in CPU
• corruptions in CPU registers

• miscomputations in CPU execution units
 CPU

Eurosys'16

Fault Model

6

– Protect against transient faults in CPU
• corruptions in CPU registers

• miscomputations in CPU execution units

– Memory is protected by other means
• DRAM protected by ECC

• CPU caches protected by ECC and parity

 CPU

Memory

Eurosys'16

HAFT: Code Transformation

z = add x, y

store z, 0x10

Native

7

Eurosys'16

HAFT: Code Transformation

z = add x, y

store z, 0x10

z = add x, y
z2 = add x2, y2

store z, 0x10

Native
Instr Level Replication
ILR

7

Eurosys'16

HAFT: Code Transformation

z = add x, y

store z, 0x10

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash
store z, 0x10

Native
Instr Level Replication
ILR

7

Eurosys'16

HAFT: Code Transformation

z = add x, y

store z, 0x10

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, crash
store z, 0x10

tx-begin

z = add x, y
z2 = add x2, y2
d = cmp neq z, z2
br d, tx-abort
store z, 0x10

tx-end

Native
Transactification
Tx

7

Instr Level Replication
ILR

Eurosys'16

Challenge of Transactification

Commodity HTM (Intel TSX) implementations
• for synchronization not fault recovery

• for small-sized well-behaved transactions

L1 cache

 CPU
HTM

8

Eurosys'16

Challenge of Transactification

Commodity HTM (Intel TSX) implementations
• for synchronization not fault recovery

• for small-sized well-behaved transactions

Need right size of HW transactions
• large and rare high abort rate→

• small and frequent high perf overhead→

L1 cache

 CPU
HTM

8

Eurosys'16

Challenge of Transactification

Commodity HTM (Intel TSX) implementations
• for synchronization not fault recovery

• for small-sized well-behaved transactions

Need right size of HW transactions
• large and rare high abort rate→

• small and frequent high perf overhead→

Solution: dynamic transaction boundaries
• track number of instructions executed

• start new transaction whenever exceed predefined threshold

L1 cache

 CPU
HTM

8

Eurosys'16

– Motivation

– Design

– Optimizations

– Evaluation

Eurosys'16

– Motivation

– Design

– Optimizations
1. Shared memory accesses

2. Lock elision

– Evaluation

Eurosys'16

– Motivation

– Design

– Optimizations
1. Shared memory accesses

2. Lock elision

– Evaluation

See the paper for
other optimizations

Eurosys'16

Optimization 1: Shared Memory Accesses

9

Eurosys'16

Optimization 1: Shared Memory Accesses

• Motivation Checks on memory accesses are expensive
 – 40% instructions are loads and stores

9

Eurosys'16

Optimization 1: Shared Memory Accesses

d = cmp neq adr, adr2
br d, xabort
val = load adr

• Motivation Checks on memory accesses are expensive
 – 40% instructions are loads and stores

9

Eurosys'16

Optimization 1: Shared Memory Accesses

d = cmp neq adr, adr2
br d, xabort
val = load adr

• Motivation Checks on memory accesses are expensive
 – 40% instructions are loads and stores

• Idea Distinguish atomic and non-atomic accesses

9

Eurosys'16

Optimization 1: Shared Memory Accesses

d = cmp neq adr, adr2
br d, xabort
val = load atomic adr val = load adr

val2 = load adr2

• Motivation Checks on memory accesses are expensive
 – 40% instructions are loads and stores

• Idea Distinguish atomic and non-atomic accesses

Explicit atomic Protected non-atomic

9

Eurosys'16

Optimization 1: Shared Memory Accesses

d = cmp neq adr, adr2
br d, xabort
val = load atomic adr val = load adr

val2 = load adr2

• Motivation Checks on memory accesses are expensive
 – 40% instructions are loads and stores

• Idea Distinguish atomic and non-atomic accesses

• Impact Up to 40% better performance

Explicit atomic Protected non-atomic

9

Eurosys'16

Optimization 2: Lock Elision

10

Eurosys'16

Optimization 2: Lock Elision

...
lock(&l)
counter++
unlock(&l)
...

Tiny critical section

• Motivation Small critical sections are expensive
 – 3 transactions for each

10

Eurosys'16

Optimization 2: Lock Elision

...
lock(&l)
counter++
unlock(&l)
...

Tiny critical section

xend
xbegin

xend
xbegin

• Motivation Small critical sections are expensive
 – 3 transactions for each

10

Eurosys'16

Optimization 2: Lock Elision

...
lock(&l)
counter++
unlock(&l)
...

Tiny critical section

xend
xbegin

xend
xbegin

• Motivation Small critical sections are expensive
 – 3 transactions for each

• Idea Use Tx for recovery and lock elision

10

Eurosys'16

Optimization 2: Lock Elision

...
lock_wrapper(&l)
counter++
unlock_wrapper(&l)
...

Tiny critical section

• Motivation Small critical sections are expensive
 – 3 transactions for each

• Idea Use Tx for recovery and lock elision

10

Eurosys'16

Optimization 2: Lock Elision

...
lock_wrapper(&l)
counter++
unlock_wrapper(&l)
...

Tiny critical section

• Motivation Small critical sections are expensive
 – 3 transactions for each

• Idea Use Tx for recovery and lock elision

• Impact Up to 30% better throughput

10

Eurosys'16

– Motivation

– Design

– Optimizations

– Evaluation

Eurosys'16

– Motivation

– Design

– Optimizations

– Evaluation
1. Performance overheads

2. Reliability

3. Real-world application: Memcached

Eurosys'16

– Motivation

– Design

– Optimizations

– Evaluation
1. Performance overheads

2. Reliability

3. Real-world application: Memcached

See the paper for
more results

Eurosys'16

Performance Overheads

11

14-core Intel Haswell CPU

Eurosys'16

Performance Overheads 14-core Intel Haswell CPU

11

Eurosys'16

Performance Overheads 14-core Intel Haswell CPU

lower is
better

11

Eurosys'16

Performance Overheads

Average performance overhead is 2×

14-core Intel Haswell CPU

lower is
better

11

Eurosys'16

Performance Overheads

Amortized by very low cache locality

14-core Intel Haswell CPU

lower is
better

11

Eurosys'16

Performance Overheads

(1) small-sized transactions and (2) high original ILP

14-core Intel Haswell CPU

lower is
better

11

Eurosys'16

Data Corruptions 2500 fault injections per benchmark

Eurosys'16

Data Corruptions 2500 fault injections per benchmark

lower is
better

Eurosys'16

Data Corruptions 2500 fault injections per benchmark

lower is
better

Eurosys'16

Data Corruptions 2500 fault injections per benchmark

lower is
better

Out of 2500 fault injections, 83% led to data corruption in output

Eurosys'16

Data Corruptions 2500 fault injections per benchmark

lower is
better

Eurosys'16

Data Corruptions 2500 fault injections per benchmark

Injected faults: only 1.1% undetected

lower is
better

Eurosys'16

Availability 2500 fault injections per benchmark

Eurosys'16

Availability 2500 fault injections per benchmark

higher is
better

Eurosys'16

Availability 2500 fault injections per benchmark

higher is
better

Eurosys'16

Availability 2500 fault injections per benchmark

higher is
better

Out of 2500 fault injections, 12% resulted in correct execution

Eurosys'16

Availability 2500 fault injections per benchmark

higher is
better

Eurosys'16

Availability 2500 fault injections per benchmark

Injected faults: 91.2% corrected
(best-effort nature of Intel TSX)

higher is
better

Eurosys'16

Memcached evaluation YCSB with 95% reads, 5% writes, latest

13

Eurosys'16

Memcached evaluation YCSB with 95% reads, 5% writes, latest

13

Eurosys'16

Memcached evaluation YCSB with 95% reads, 5% writes, latest

13

Eurosys'16

Memcached evaluation YCSB with 95% reads, 5% writes, latest

30%

13

60%

Eurosys'16

Memcached evaluation YCSB with 95% reads, 5% writes, latest

15%

13

Eurosys'16

Summary

14

Eurosys'16

Summary

HAFT provides fault tolerance against arbitrary
data corruptions caused by transient CPU faults

14

Eurosys'16

Summary

HAFT provides fault tolerance against arbitrary
data corruptions caused by transient CPU faults

✔ Transparent
• no changes in source code
• general programming model

14

Eurosys'16

Summary

HAFT provides fault tolerance against arbitrary
data corruptions caused by transient CPU faults

✔ Transparent
• no changes in source code
• general programming model

✔ Practical
• Shared-memory multithreaded programs
• Fault detection and fault recovery

14

Eurosys'16

Summary

HAFT provides fault tolerance against arbitrary
data corruptions caused by transient CPU faults

✔ Transparent
• no changes in source code
• general programming model

✔ Practical
• Shared-memory multithreaded programs
• Fault detection and fault recovery

✔ Efficient
• Low performance overhead
• Relies on commodity-hardware HTM (Intel TSX)

14

Eurosys'16

Thank you!
dmitrii.kuvaiskii@tu-dresden.de

Source code available: https://github.com/tudinfse/haft

https://github.com/tudinfse/haft

Eurosys'16

Backup slides

Eurosys'16

(Un)Reliability of CPUs

[Designing Reliable Systems from Unreliable Components, S. Borkar, Micro'05]

Eurosys'16

Performance evaluation

Average performance overhead is 2× (less with more threads)

Eurosys'16

Memcached comparison SEI (Behrens et al, NSDI'2015)

HAFT outperforms SEI by 30-40%

Eurosys'16

HAFT: Run-time Execution

store

load

Memory

check

check

tx-end

tx-begin

Original data flow

Shadow data flow

L1 cache

Eurosys'16

Comparison with State-of-the-Art

Approach Resources Multith. Perf overhead Fault coverage

PLR [8]
DSN'07

2-3× memory usage
2-3× spare cores

No Detection: 16.9%
Recovery: 41.1%

Detection: very high
Recovery: N/A

SWIFT [6]
CGO'05

 – No Detection: 41%
Recovery: N/A

Detection: high
Recovery: N/A

Shoestring [5]
ASPLOS'10

 – No Detection: 15-
30%
Recovery: N/A

Detection: medium
Recovery: N/A

DAFT [10]
PACT'10

2× spare cores No Detection: 38%
Recovery: N/A

Detection: high
Recovery: N/A

RAFT [9]
CGO'12

2× memory usage
2× spare cores

No Detection: 3%
Recovery: N/A

Detection: very high
Recovery: N/A

RomainMT [4]
EMSOFT'14

2-3× memory usage
2-3× spare cores

Yes Detection: 13-
22%
Recovery: 24-
65%

Detection: N/A
Recovery: N/A

SEI [2]
NSDI'15

 –
(manual code changes)

Yes Detection: 20-
50%
Recovery: N/A

Detection: very high
Recovery: N/A

HAFT
(this work)

 – Yes Detection: 52%
Recovery: 89%

Detection: high
Recovery: high

Eurosys'16

Hardening

Hardening TechniqueSource code executable

Limitations:
 ✘ Non-transparent

• Manual changes in source code [1] [2]
• Specific languages / programming models [3]

 ✘ Impractical
• Only single-threaded programs [1] [5-10]
• Only fail-stop execution [1] [2] [5] [6] [8-10]

 ✘ Inefficient
• Requires spare cores / deterministic execution [4] [8-10]
• Memory overhead [8] [9]

CPUCPU

Eurosys'16

References

[1] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini.
 Practical hardening of crash-tolerant systems. ATC'12

[2] D. Behrens, M. Serafini, S. Arnautov, F. P. Junqueira, and C. Fetzer.
 Scalable error isolation for distributed systems. NSDI'15

[3] P. Bhatotia, A. Wieder, R. Rodrigues, F. Junqueira, and B. Reed.
 Reliable data-center scale computations. LADIS'10

[4] B. Döbel and H. Härtig.
 Can we put concurrency back into redundant multithreading? EMSOFT'14

[5] S. Feng, S. Gupta, A. Ansari, and S. Mahlke.
 Shoestring: Probabilistic soft error reliability on the cheap. ASPLOS'10

[6] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
 SWIFT: Software implemented fault tolerance. CGO'05

[7] G. A. Reis, J. Chang, and D. I. August.
 Automatic instruction-level software-only recovery. Micro'07

[8] A. Shye, T. Moseley, V. Reddi, J. Blomstedt, and D. Connors.
 Using process-level redundancy to exploit multiple cores for transient fault tolerance. DSN'07

[9] Y. Zhang, S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke, and D. I. August.
 Runtime asynchronous fault tolerance via speculation. CGO'12

[10] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August.
 DAFT: Decoupled acyclic fault tolerance. PACT'10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

