HASE

Hardware-Assisted Symbolic Execution

Jorg Thalheim, Pramod Bhatotia Pedro Fonseca Baris Kasikci
A THE UNIVERSITY UNIVERSITY of
3 ?fEDINBURGH WAS H I NGTO N K/II\IIIEEHR?EXONF

KLEE Symposium, 2018

Motivation

e Reproducing bugs that occur in production is hard
o To fix bugs, developers have to reproduce them to understand the root cause

e Developers currently rely on
Stack traces

OS environment information
Coredumps

User reports

o O O O

How can we make it easier to reproduce bugs?

State-of-the-art: Replay debugging

Non-deterministic events
signals, system calls, ...

Record- &
Replay
system

Program

Replay events

e Limitation: High overheads for production
o RR[Mozilla]: 1.2x - 1.4x
o ODR [SOSP09]: 1.6x - 3.5x
o DoublePlay [ASPLOS11]: 1.15x - 1.28x

How can we reduce the overhead to allow

continuous logging?

System design

Phase #1:
In-production
monitoring

Control flow +

Program

E.g. MySQL

memory snapshot

Processor Coredump
trace

Phase #2:
Replay debugging

Symbolic execution

Control flow
+ data constraints

Replay debugging

interface

Background: Intel Processor Trace (PT)

Since Broadwell generation (2014)

Records full instruction history with low overhead (3%)*
Major limitation: High log bandwidth (200MB/s - 2GB/s)
Ringbuffer mode - only keep last X instructions

E.g. Firefox playing a YouTube video:
o 5MB trace buffer ~ 192.000 branches ~ 3.3ms

=

Ringbuffef m

*FlowGuard [HPCA17]

Background: Intel Processor Trace (PT) - bonus

More information: Andi Kleen'’s Blog: hitp://halobates.de/blog/p/410
1 bit per conditional jump

(optional) time stamps

Address filtering

Full system trace possible

Easy to use:
o §$ perfrecord -e intel_pt// program
e Use cases:

o Reconstruct every instruction (not just sampling)
o Very accurate profiling
o Code coverage (for fuzzing)

http://halobates.de/blog/p/410

Background: Coredump

Snapshot of mutable
virtual memory

CPU Registers

Heap Coredump

BSS Process context

Data (uid,pid ...)
User program text

Phase #1: In-production monitoring

Crash or
Program failure Monitoring Error reﬁoﬂ
e.g. MySQL module
Core dump &
... processor trace

snapshot

Operating system

Intel PT

Phase #2: Replay debugging

Without user interaction Interactive

A I

Error report Control flow Replay debugging

+ data constraints interface

Symbolic Engine

Pre-compute/pre-constrain
symbolic states

Pull serialized states &
replay debugging

HASE frontend

I3¥INCLUGE <SSTreams
14

15using namespace inspector;
16

17extern "C" {

18 void inspectorRunRepl(const char* path, unsigned lineNumber, const char* clingDeclare, const char* clingContext, .

19 va_list arglist;

21 // pass all pointer to cling

22 va_start(arglist, clingContext);

int bufferSize = vsnprintf(0, 0, clingContext, arglist);
va_end(arglist);

Uses debug
symbols

ar* clingContextBuffer = new char[bufferSize + 1];

- start(arglist, clingContext);

28 vsnprintf(clingContextBuffer, bufferSize + 1, clingContext, arglist);
29 va_end(arglist);

Eval =
Va uate 31 const char* argv = "cling";
32 cling: :Interpreter interp(1l, &argv, LLVMDIR);

eXpreSSionS ;i interp.declare(clingDeclare);

5 clina: :MetaProcessor metaProcessor(intern. clina::errs()):

In « P lineNumber
Out[1]: 1@

Print backtrace —® """

Backtrace:
Func inspectorRunRepl, sp=0x7fffffffffeffd8, ret=0x4070a0
Func main, sp=0x4070a0, ret=0x0

Timeslider —— w1

=) {

x86
machine
code

HASE's symbolic execution

e Uses core dump
o Simplifies constraints by using concrete values from the core dump for the final state

e Follows single path
o Avoids path explosion by following the processor trace snapshot

o Lazy

o Does not compute all memory values, only those requested by the developer

e Consistent

O Concrete values computed show to the developer are added as constraints to the session

Open challenges

e Comprehensibility:
o Generate data values that help programmer to understand the problem

e System model:
o |dea #1: Extend Angr’s system model
o Idea #2: Full system tracing, symbolic or concrete execution of kernel code

e Multi-threading:

o Processor trace has optional timestamps for partial ordering

Summary

e Motivation: Reproducing production bugs is difficult
o Existing record/replay systems have high overheads

e HASE:

o Replay debugging tool with low overhead
o Combines symbolic execution and Intel PT
o Operates on unmodified binary application code and kernel

e Project page: https://github.com/hase-project/hase

&

WORK IN PROGRESS

https://github.com/hase-project/hase

