
HASE
Hardware-Assisted Symbolic Execution

Jörg Thalheim, Pramod Bhatotia Baris KasikciPedro Fonseca

KLEE Symposium, 2018



Motivation
● Reproducing bugs that occur in production is hard

○ To fix bugs, developers have to reproduce them to understand the root cause

How can we make it easier to reproduce bugs?

● Developers currently rely on
○ Stack traces
○ OS environment information
○ Coredumps
○ User reports



State-of-the-art: Replay debugging

How can we reduce the overhead to allow 
continuous logging?

● Limitation: High overheads for production
○ RR [Mozilla]: 1.2x - 1.4x 
○ ODR [SOSP’09]: 1.6x - 3.5x
○ DoublePlay [ASPLOS’11]: 1.15x - 1.28x

Program
Record- & 

Replay 
system

Replay events

Non-deterministic events 
(signals, system calls, …)



System design

Control flow 
+ data constraints

Monitoring

Phase #1:
In-production 

monitoring

Phase #2:
Replay debugging

Control flow + 
memory snapshot

Program
E.g. MySQL

Symbolic execution

Replay debugging 
interface

CoredumpProcessor 
trace



● Records full instruction history with low overhead (3%)*

*FlowGuard [HPCA’17]

Background: Intel Processor Trace (PT)

CPU

Ringbuffer mode

Ringbuffer

RAM

● Major limitation: High log bandwidth (200MB/s - 2GB/s)
● Ringbuffer mode - only keep last X instructions
● E.g. Firefox playing a YouTube video: 

○ 5MB trace buffer ~ 192.000 branches ~ 3.3ms

● Since Broadwell generation (2014)



Background: Intel Processor Trace (PT) - bonus
● More information: Andi Kleen’s Blog: http://halobates.de/blog/p/410
● 1 bit per conditional jump
● (optional) time stamps
● Address filtering
● Full system trace possible
● Easy to use:

○ $ perf record -e intel_pt// program

● Use cases:
○ Reconstruct every instruction (not just sampling)
○ Very accurate profiling
○ Code coverage (for fuzzing)

http://halobates.de/blog/p/410


Background: Coredump

Coredump

CPU Registers

Process context 
(uid,pid …)

BSS

Stack

Heap

Data
User program text

Snapshot of mutable 
virtual memory

...



Phase #1: In-production monitoring

Program
e.g. MySQL

Crash or 
failure Monitoring

module

Operating system

Intel PT 

Core dump & 
processor trace 

snapshot

Error report



Phase #2: Replay debugging

Error report
Symbolic Engine

Without user interaction

Pre-compute/pre-constrain 
symbolic states

Replay debugging 
interface

Interactive

Pull serialized states & 
replay debugging

Control flow 
+ data constraints



HASE frontend

Timeslider

Evaluate 
expressions

Print backtrace

Angr

x86 
machine 

code

Uses debug 
symbols



HASE’s symbolic execution
● Uses core dump

○ Simplifies constraints by using concrete values from the core dump for the final state

● Follows single path
○ Avoids path explosion by following the processor trace snapshot

● Lazy
○ Does not compute all memory values, only those requested by the developer

● Consistent
○ Concrete values computed show to the developer are added as constraints to the session



Open challenges
● Comprehensibility:

○ Generate data values that help programmer to understand the problem

● Multi-threading:
○ Processor trace has optional timestamps for partial ordering

● System model:
○ Idea #1: Extend Angr’s system model
○ Idea #2: Full system tracing, symbolic or concrete execution of kernel code



Summary
● Motivation: Reproducing production bugs is difficult

○ Existing record/replay systems have high overheads

● HASE:
○ Replay debugging tool with low overhead
○ Combines symbolic execution and Intel PT
○ Operates on unmodified binary application code and kernel

● Project page: https://github.com/hase-project/hase

https://github.com/hase-project/hase

