Reliable Data-Center Scale Computations

Pramod Bhatotia! Alexander Wieder Rodrigo Rodriguest Flavio Junqueira: Benjamin Reed:!
fMax Planck Institute for Software Systems (MPI-SWS) #Yahoo! Research

ABSTRACT

Neither of the two broad classes of fault models considered
by traditional fault tolerance techniques — crash and Byzan-
tine faults — suit the environment of systems that run in
today’s data centers. On the one hand, assuming Byzan-
tine faults is considered overkill due to the assumption of a
worst-case adversarial behavior, and the use of other tech-
niques to guard against malicious attacks. On the other
hand, the crash fault model is insufficient since it does not
capture non-crash faults that may result from a variety of
unexpected conditions that are commonplace in this setting.
In this paper, we present the case for a more practical ap-
proach at handling non-crash (but non-adversarial) faults in
data-center scale computations. In this context, we discuss
how such problem can be tackled for an important class of
data-center scale systems: systems for large-scale process-
ing of data, with a particular focus on the Pig programming
framework. Such an approach not only covers a significant
fraction of the processing jobs that run in today’s data cen-
ters, but is potentially applicable to a broader class of ap-
plications.

General Terms

Design, Performance, Reliability

Categories and Subject Descriptors

D.4.5 [Reliability]: Fault-tolerance; D.4.7 [Organization
and Design]: Distributed systems

Keywords

Fault detection, Byzantine faults, non-adversarial faults, data
center, data processing, Pig

1. INTRODUCTION

In the past decade, users have been offered a number of
services that run in the data centers of Internet companies

like Google, Yahoo!, or Facebook. The large infrastructure
that supports these services is inevitably designed to assume
an environment where faults are the norm, and not the ex-
ception, not only due to the use of commodity hardware to
support these infrastructures, but also because of the sheer
scale at which these services operate.

When handling faults in this setting, machines becoming
(temporarily or permanently) unreachable is not the only
type of faulty behavior that needs to be handled. Other fault
modes that cause machines to behave incorrectly, which were
often considered too unlikely to require guarding against,
become part of the list of concerns at this scale.

Anecdotal reports point to the fact that the designers of
these services resort to ad hoc mechanisms to prevent some
forms of non-crash faults. For instance, some systems pro-
tect specific components against faults that cause state cor-
ruption, e.g., by deploying additional checksums to guard
that state [1]. At the same time, designers have stayed away
from using more systematic approaches like Byzantine fault
tolerance [5], since they are considered costly in terms of
performance and administrative overhead [2, 17]. Further,
much of this overhead goes to protect from malicious be-
havior such as compromised clients, even though security
infrastructure components such as firewalls or security scans
already offer such protection.

But the problem with these non-systematic methods for
handling this class of non-crash faults is that they only pro-
tect against faulty conditions that the developer provisioned
for, and when not all erroneous conditions are captured, the
consequences can be dire [1]. Furthermore, this approach
imposes a burden on the developers of the infrastructure or
the applications who have to manually implement a series
of semantic checks.

In this paper, we present the case for a more practical and
systematic approach for handling non-crash (but non adver-
sarial) faults in data-center scale computations, and we take
some initial steps towards a concrete solution in the con-
text of a specific class of applications. The paper is divided
in three main parts. Section 2 argues that a different ap-
proach for handling faults is necessary for any system that
runs in the environment of a data center. In Section 3, we
narrow the scope of the systems we consider to those that

Permission to make digital or hard copies of all or part of this work for perform large-scale data processing. This enables us to high-
personal or classroom use is granted without fee provided that copies arelight more precisely a series of requirements and challenges
not made or distributed for profit or commercial advantage and that copies that this approach has to meet, and additionally some op-

bear this notice and the full citation on th_e first page. To copy oth_erwise,_t_o portunities that can be leveraged to meet these challenges.
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
LADIS 10 Zirich, Switzerland
Copyright 2010 ACM 978-1-4503-0406-1 ...$10.00.

Finally, in Section 4 we sketch the design of a solution in the
context of the Pig [14] programming framework for large-



scale data processing. Restricting ourselves to this frame-
work makes it simpler to tackle this problem but also brings
two important advantages. First, Pig is an important sub-
strate that is used extensively to run many data-center scale
processing jobs. For example, within Yahoo!, approximately
60% of the ad-hoc jobs and 40% of production jobs lever-
age the Pig platform [13]. This means that a large class of
important computations can transparently benefit from our
approach. Second, this is a starting point from which we in-
tend to generalize to develop a broad class of fault tolerance
techniques.

2. FAULTSIN LARGE-SCALE SYSTEMS

In this section, we discuss the fault patterns in data-center
scale systems, and some of the current methods for handling
them.

2.1 Instances of Faults

The methods employed to handle faults in the software
infrastructure running in data centers focus primarily on
handling crash faults, i.e., the silent failure of a data center
host that causes it to stop operating.

However, not all faults that occur in data center com-
putations cause machines or software to fail silently. The
following are examples of faults that have been reported in
data-center scale systems that cause faulty components to
behave in various other ways.

Storage System Faults: File and storage systems are
prone to faults due to causes that range from the gradual
decay of storage media to bugs in disk firmware or software
layers above it. While disks already provision against some
of these problems, such as ECCs protecting individual disk
blocks, some faults can go undetected. For instance, a re-
cent study of storage reliability in a production system [4]
reports a surprisingly large prevalence of undetected disk
errors (i.e., instances when reading from the disk returns a
value that does not correspond to the latest value that was
written). In particular, for some drive models, 4% of the
drives exhibit this type of errors over the 17 months of this
study.

Network Faults: Network channels are notoriously noisy,
and networking protocols guard against message corruption
by adding redundancy to individual packets. However, there
is a chance that the channel noise induces errors in both the
original packet and the redundancy, in such a way that an
error goes undetected. While checksums are dimensioned to
make this occurrence unlikely, there is evidence that data-
center services take this possibility into account due to their
scale [10].

Memory Corruption: Soft errors or physical defects can
also result in the corruption of bits in DRAM, or other parts
of the data path. Although some faults can be detected
by using ECC-protected DRAM chips, a recent study of
detected DRAM errors at Google points to a surprisingly
large prevalence of these errors [16]. In particular, this study
points to the fact that memory errors detected by ECC are
on the order 25,000 to 70,000 errors per billion device hours
per Mbit and that more than 8% of DRAMs are affected by
€rTors per year.

Software Bugs: The size and complexity of the software
infrastructure running in today’s data centers makes this

infrastructure particularly prone to software bugs. Even if
the application code is correct, a bug in the underlying in-
frastructure might cause that application to produce an in-
correct output. For instance, many data-center applications
rely upon MapReduce [7] and Pig [14] for deploying large-
scale computations. The Apache software bug repository
contains numerous instances of bugs in Pig that illustrate
this problem. For example, Bug #PI1G-1289, caused the im-
plementation of the Join operator to return incorrect results
for certain inputs, in which case even a correct Pig program
might produce a wrong output.

2.2 Handling Faults

When it comes to handling various types of faults, crash
faults, being the most common, are well provisioned for by
the different components of the software infrastructure run-
ning in data centers. For instance, systems such as GFS,
HDF'S, or ZooKeeper use replication to tolerate crashes from
a subset of servers. As another example, the MapReduce
scheduler restarts tasks on another machine when it detects
that they are no longer responding.

On the other hand, handling non-crash faults is done in
a far less systematic way. Some components of the system
are protected by additional checksums, e.g., the file system
or network transmission [10]. However, it is unclear how to
ensure that all components are protected. A recent outage of
Amazon’s S3 storage service exemplifies this concern. The
official description of the problem mentions that messages
gossiped among servers had a single bit corrupted, and that
the checksums they have in place happened not to protect
that particular part of the state [1]. (Curiously, the response
to the problem that was announced included deploying more
checksums in more parts of the state.)

2.3 Alternative Methodsfor Non-Crash Faults

An alternative, more systematic way of handling non-
crash faults is to employ Byzantine fault tolerance tech-
niques [11, 5]. This class of fault tolerance methods makes
no assumptions about the behavior of individual faulty com-
ponents, which allows them to tolerate any deviation from
their correct behavior. Many of these methods work pro-
vided there are enough correct components to outvote the
faulty ones. Therefore this fault model encompasses not only
the types of faults we mentioned above, but also situations
such as malicious attacks where nodes may be under control
of an adversary.

However, practitioners have often expressed their concerns
about BF'T techniques, which are often regarded as overkill,
partly due to the fact that they need to handle malicious
attacks, which are very unlikely in systems running within
the security perimeter of the data center. In particular, BFT
has been criticized for being too expensive [2], and having
too many deployment hurdles, caused by requirements such
as extra configuration steps or the need to overhaul the data
center infrastructure [17].

Thus we advocate the need to find solutions that can han-
dle the kind of arbitrary, non-crash faulty behavior that we
exemplified, and yet are not concerned with the kind of ad-
versarial behavior that BFT is designed to tolerate.

While in this work we do not propose generic solutions
to this problem, the remainder of the paper will sketch an
approach that works for an important category of systems.



3. CHALLENGESAND OPPORTUNITIES

In this section, we discuss challenges and opportunities
that arise from handling the class of faults we motivated.
To guide our discussion, we narrow the focus of our problem
statement throughout the rest of the paper in two ways.

First, we focus on increasing the reliability of large-scale
data processing systems. Processing large data sets using
commodity hardware with the MapReduce [7] or Pig [14]
programming frameworks is commonplace in current data
centers. Consequently, such frameworks are part of the crit-
ical infrastructure of several Web companies.

The second way in which we focus our discussion is by re-
stricting it to how to provide mechanisms for fault detection,
since fault detection is the central aspect of any fault han-
dling scheme. For instance, techniques for masking faults,
rollback and recovery, or testing all have in common that
they often require a fault detection scheme in place in order
to trigger a subsequent fault handling mechanism.

3.1 Overhead

The first challenge we list is that a fault detection scheme
should incur a modest overhead, and this observation is par-
ticularly stringent in the case of large-scale data processing
computations, which typically require on the order of several
machine-days to execute. In this context, the most straight-
forward way to perform fault detection by replicating the
work, is not an attractive proposition.

Some specificities of the types of faults we are trying to
detect and the restricted scope of the computations we are
considering offer opportunities for savings. For example, the
use of techniques such as cryptography to guard against ad-
versarial behavior in BE'T protocols is an unnecessary source
of processing overhead and administrative overhead to man-
age keys.

Another opportunity stems from the fact that many of the
large-scale data processing jobs that take place in today’s
data centers make use of programming frameworks that offer
languages such as DryadLINQ [19] or Pig Latin [14] with a
pre-defined set of constructs for expressing the kind of data
processing that can take place. As will become apparent
in the next section, this enables us to avoid performing full
replication, and instead focus on semantic checks where the
redundancy is of the form of a simpler computation over the
inputs and the outputs.

3.2 Flexible Resource Utilization

It is not trivial to allocate resources for fault detection.
Resource availability in a data center can vary dramatically
according to the characteristics of the computation that is
executed (e.g., due to the use of synchronization points) and
of other computations that share the computing environ-
ment.

Thus, in case there are not enough resources available for
running a redundant computation that is required for fault
detection (or also in the case time-critical tasks where delays
are unacceptable) the system should enable decoupling fault
detection from the main computation, and running detection
in the background. Also, the fault detection system should
support an opportunistic resource utilization. That is, such
a system should be able to use a limited resource budget
(e.g., spare resources at low load) to check as much of the
computation as possible.

Thus a crucial requirement is that the fault detection sys-

LOAD °filel’ AS (x,y,z);
LOAD ’file2’ AS (t,u,v);
FILTER A by y>0;

FILTER B by z<1;

JOIN C BY x, D by u;

Mmawor=
1]

Figure 1: Example Pig program

tem must be able to trade cost for coverage. This is akin to
the fault detection schemes that are used when transmitting
a message through a noisy channel. In this case, the system
can add a small amount of redundancy, e.g., in the form of a
checksum or an error-correcting code, and this redundancy
can be parameterized to trade cost (how many bits are there
in the checksum) for coverage (the maximum number of bit
flips that are detectable). An open research question is how
to generalize this concept to complex computations whose
components can suffer from the types of faults we exempli-
fied before.

Here, the fact that we are dealing with non-adversarial
faults provides an opportunity to simplify the techniques
for trading cost for coverage. E.g., going back to the net-
work transmission example, an adversary could flip the right
bits both in the message and in the checksum such that the
fault goes undetected. However, since the bits that are cor-
rupted are not chosen by an adversary, one can compute
(and bound) the probability of undetected corruption.

3.3 Completeness

A system for fault detection should also be as complete as
possible, i.e., have a low false negative rate. While this chal-
lenge seems rather obvious, it differs from the approaches
that are currently in use — as we discussed, in current sys-
tems the developers add checks and checksums to detect
faults they anticipate could occur. This approach bears the
risk of not detecting potential faults and also puts a heavy
burden on the developers. In contrast, an ideal system for
fault detection should be complete in the sense that it iden-
tifies accurately faults in a computation, even if their cause
was not considered by the developer. Furthermore, it should
detect the various types of faults we have described before,
including situations like deterministic software bugs where
traditional replication solutions will fail since all replicas will
fail simultaneously.

For this challenge the existence of the previously men-
tioned programming frameworks also offers an opportunity
for introducing some diversity into the system that would be
otherwise difficult to achieve. In the next section we discuss
how this can be achieved.

3.4 Transparency

The final challenge we point out is that an ideal fault de-
tection system is transparent in the sense that it does not
require modifications to the application code nor the use of
a new programming framework. Again, the next section will
demonstrate how the existence of programming frameworks
brings an opportunity to automatically deploy the appropri-
ate checks for existing computations that use them.

4. HogPen: TIDY PIG COMPUTATIONS

In this section we sketch the design of HogPen, a fault de-



a = LOAD 'data' AS (a1:int);
| )Compute hash

* value of set
x = ORDER a BY a1 DESC;

[ Verify hash

* > value of set

Figure 2: An example of a semantic check for Order
By

tection system for the Pig large-scale data processing frame-
work [14].

4.1 Background

Pig is a framework for performing large-scale distributed
computations in a cluster environment. It provides a high-
level language called Pig Latin [14] in which such compu-
tations can be expressed, and the infrastructure to deploy
these programs on a cluster.

In a nutshell, Pig Latin enables programmers to express
data analysis programs in an imperative language that is
embedded with a set of queries akin to SQL or relational
algebra. For example, the code in Figure 1, adapted from [8],
shows how operators such as join, or filter are embedded
in an imperative program.

Such a program then goes through a series of compilation
stages that produce a job that can be executed in a Hadoop
MapReduce cluster. Hadoop MapReduce is a framework
for parallel processing of large data sets where programmers
only specify the implementations of two functions, map and
reduce. The framework then partitions the input data and
each part is processed by the map tasks in parallel. Then
the output of the map stage is fed into the reduce tasks,
partitioned by a series of keys that are output by the map
tasks. The Hadoop framework implements the scheduling,
monitoring and re-execution of these tasks.

Therefore the compilation of a Pig program produces a
series of implementations of the map and reduce functions,
which are then chained together to produce the final compu-
tation. The MapReduce jobs are then submitted to Hadoop
to be executed.

4.2 Design Overview

The approach taken in HogPen leverages the fact that Pig
Latin has a limited set of constructs for large-scale process-
ing, and these have well defined semantics based on rela-
tional algebra. This implies that by defining a set of custom
semantic checks for each one of these constructs, with the
characteristics that we listed in the previous section, we are
able to deploy them transparently for detecting faults in the
execution of any Pig program.

For example, the execution of an Order By operator can
be checked as shown in Figure 2. The output of Order By
needs to be verified for two properties: (i) the output set
must be a permutation of the input set, and (ii) the output
must be sorted. The semantic check for the Order By op-
erator verifies these two properties: (i) the check computes
the hash value for the input set and compares it with the
hash value of the output set, and (ii) the check also verifies

Derive and Computational
incorporate semantic < job
checks

!

Determine initial Computational
deployment plan budget

Allocate cluster

resources
Update the
budget

Report faults
in computation

Figure 3: HogPen overview

that the output set is sorted. Furthermore, these verifica-
tions can be done in linear time. Another example is Join
operator, which can be checked by comparing the set of tu-
ples in the input tables with the corresponding parts of the
output table.

Given a set of parameterizable checks for each operator
that is supported by the language, these can be integrated
in a complete system. Figure 3 depicts an overview of the
HogPen architecture. The system takes the following input:
(1) a Pig computation to be executed in a cluster, and (2)
a “computational budget” of resources that can be used for
checking the computation. Given these inputs, the system
automatically derives a set of program specific checks and in-
corporates them in the original computation. Furthermore,
the system deploys these checks alongside the computation
automatically. The checks will be executed in an opportunis-
tic manner to maximize coverage with the available compu-
tational budget. At run-time, the system reports faults, if
any, detected by the deployed checks. These can trigger au-
tomatic recovery actions like re-executing a subset of the
computation, or present an error report to the user. Finally,
the computational budget for running these checks might
vary according to the difference between the estimated cost
for the computation and its actual cost. Thus the system
should enable adapting the level of the checks to changes in
the available computation resources.

This high-level description of the system hides many of the
challenges in implementing such a system. In the remainder
of the section, we describe a few of the main technical hurdles
that underlie the implementation of this approach.

4.3 Deploying Semantic Checks

The simplest way to deploy these semantic checks would
be to use a source-to-source compilation where each operator
would generate a corresponding check that we run alongside.
Furthermore, we might think of aggregating multiple oper-
ators and devising a single, more efficient check for a set of
consecutive operations.

However, Pig performs several optimizations akin to tra-
ditional database query optimizations that could draw these
checks ineffective. These optimizations result in reordering,
deletion, and simplification of Pig operators. This is illus-
trated by Figure 4, which shows different compilation stages
for the example Pig program from Figure 1. In the logical
plan, the Join operator is applied on two tables. Before
executing the Join operation, one of the input sets is fil-



(]

Filter (A) Filter (A)

Logical plan
Physical plan

MapReduce plan

Figure 4: Compilation stages in Pig

tered twice using the Filter operator. To build the phys-
ical plan, the optimizer swaps the Filter operators in the
data flow graph to minimize the number of tuples to be
processed. The logical operator Join is then broken down
into a sequence of the physical operators Local rearrange,
Global rearrange, Package and Foreach. Finally, parts of
the physical plan are aggregated into MapReduce computa-
tions that are executed on a Hadoop cluster. This illustrates
the challenge when associating checks with the logical plan:
care must be taken that the subsequent reorganization of
the computation does not break their semantics.

We consequently propose to incorporate the semantic checks

after the optimization stage completes in order to avoid such
interference. To enable this, we have to keep track of how
the high-level operators are compiled such that we can insert
the operator-specific checks after the optimization. These
checks can be inserted into the resulting MapReduce plan
as illustrated in Figure 5.

4.4 Opportunistic Checking

As mentioned in the previous section, we intend to en-
able trading cost for coverage to reduce the cost of checking
a computation when the computational budget for redun-
dancy is low. To achieve this flexibility, we intend to incor-
porate parameterized checks as a function of the available
computational budget. These parameterized checks provide
a knob that trades cost of checking for the corresponding
coverage, resorting to techniques such as sampling. The
knob could be used at run-time to perform or skip certain
checks based on the available computing resources. For the
example shown in Figure 1, the system might be able to
check only a subset of the data or the operators based on
the priority. The system should also be able to adapt to a
varying resource availability at runtime by estimating how
cost and coverage vary according to this knob, and finding
the best possible coverage for a given cost budget.

While estimating cost is relatively straightforward, an open
research question is how to gauge the coverage of a certain
check.

5. RELATED WORK

In this section we cover prior work related to handling
non-standard failure modes.

Fault models. The most common way to model faulty be-
havior that does not lead to a silent crash is using the Byzan-

Computational job

Pig framework

Infer logical Infer program
operators in state after
program optimizations

Incorporate checks

Figure 5: Deploying semantic checks in Pig

tine fault model that was proposed by Lamport et al. [11].
There have been several proposals for handling Byzantine
faults, e.g. by using replication protocols to tolerate a sub-
set of Byzantine replicas [5], or by detecting their occur-
rence using an auditing approach that checks node behavior
against that of a reference implementation [9]. Our work
points to the direction of an intermediate fault model, much
like the NR-arbitrary model of Abraham et al. [3] that cap-
tures non-responsive processors and arbitrary corruption of
state. However, we need to consider other sources of non-
crash faults, which are not captured by this simple model.
Clement also mentions the need for a relaxed Byzantine fault
model to design a more practical and cost effective fault tol-
erance system [6]. In his note, he raises attention to the fact
that the design choices for such a fault model raise impor-
tant questions in terms of the trade-off between consistency
and safety semantics, liveness guarantees, and restrictions
on the model.

Software bugs. Many techniques were proposed to handle
software bugs [18], such as finding these bugs using invari-
ant checking, comparing to a reference implementation, or
model checking. While software bugs are a source of non-
crash faults that we are concerned with, they are not the
only one, and finding such problems requires going beyond
this set of techniques.

Spread-spectrum computations. Our notion of adding
a small, parameterizable amount of redundancy to a com-
putation is related to the work by Murray and Hand [12].
They propose computation dispersal algorithms that add re-
dundancy to some restricted types of computations, hence
tolerating crash faults of a subset of the nodes performing
each part. This idea could also be adapted to detect faulty
computations, albeit restricted to the set of tasks that are
suited to this approach.

Arithmetic checks. Schiffel et al. proposed a fault de-
tection mechanism targeted at a much lower level to guard
against hardware faults [15]. They develop checks for arith-
metic operators based on AN-encoding, and extend a com-
piler to insert those checks in the application. While the two
approaches are similar in spirit, such a low-level approach
could impose a high overhead, and can only guard against a
more limited set of faults.



6. CONCLUSIONS

We present a preliminary approach to automatically de-
ploy semantic runtime checks for Pig programs to detect
arbitrary, non-malicious faults. In contrast to approaches
based on replication, such as BFT systems, we can lever-
age the semantics of Pig to generate language-specific checks
that can be significantly less expensive than replication. Ad-
ditionally, we can take advantage of a non-adversarial set-
ting to minimize costs in comparison to a BFT system, or
to trade cost for coverage.

Our proposal is of practical significance given the preva-
lence of data processing frameworks like Pig/Hadoop in pro-
duction settings of large Web companies, and the business
value of the computations they support. But at the same
time our proposal opens a variety of interesting research
questions that we intend to tackle in the future. In particu-
lar, we left open the issue of defining a precise fault model,
and such definition might have interesting implications for
the design of the system. In particular, when we enable
trading cost for coverage, the notion of coverage (i.e., what
fraction of faults can we detect if we only check a subset
of the computation) is intertwined with the definition of a
realistic and precise fault model. Another related direction
that we intend to explore is the possibility of choosing which
parts of the computation to check based on the impact that
a fault might have on the final computation result. Finally,
generalizing this approach and applying it to other compo-
nents of the infrastructure that comprises the data center
back-ends of Internet companies is an interesting avenue of
future work.

7. REFERENCES

[1] Amazon S3 Availability Event.
http://status.aws.amazon.com/s3-20080720.html.

[2] Things that scale. http://wuw.thingsthatscale.com/2008/09/
large-scale-distributed-systems-and-middleware-ladis/.

[3] ABRAHAM, I., CHOCKLER, G., KEIDAR, I., AND
MALkHI, D. Byzantine disk paxos: optimal resilience
with byzantine shared memory. In Distributed
Computing (2004), ACM Press, pp. 387-408.

[4] BAIRAVASUNDARAM, L. N., GooDpsoN, G. R.,
SCHROEDER, B., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. An analysis of data
corruption in the storage stack. In Proceedings of the
6th USENIX Symposium on File and Storage
Technologies (FAST) (2008).

[6] CasTRO, M., AND Liskov, B. Practical byzantine
fault tolerance. In OSDI °99: Proceedings of the third
symposium on Operating systems design and
implementation (1999), pp. 173-186.

[6] CLEMENT, A. Distributed computing in sosp and osdi.
SIGACT News 39, 2 (2008), 84-91.

[7] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified
data processing on large clusters. In OSDI’04:
Proceedings of the 6th conference on Symposium on
Opearting Systems Design € Implementation (2004),
pp- 10-10.

[8] GATEs, A. F., NaTKOVICH, O., CHOPRA, S.,
KaAMATH, P., NARAYANAMURTHY, S. M., OLSTON,
C., REED, B., SRINIVASAN, S., AND SRIVASTAVA, U.
Building a high-level dataflow system on top of
map-reduce: the pig experience. Proc. VLDB Endow.

(10]

(11]

(12]

(15]

(16]

2, 2 (2009), 1414-1425.

HAEBERLEN, A., KUuzNETSOV, P., AND DRUSCHEL, P.
PeerReview: Practical accountability for distributed
systems. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP’07) (Oct
2007).

ISARD, M. Autopilot: automatic data center
management. SIGOPS Oper. Syst. Rev. 41, 2 (2007),
60-67.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. The
byzantine generals problem. ACM Trans. Program.
Lang. Syst. 4, 3 (1982), 382—401.

MURRAY, D. G., AND HAND, S. Spread-spectrum
computation. In HotDep ’08: Proceedings of the
Fourth Workshop on Hot Topics in Syetms
Dependability (2008).

OLsTON, C. Pig: Web-scale data processing.
http://infolab.stanford.edu/ olston/pig.pdf.
OLsTON, C., REED, B., SrivasTavA, U., KUMAR, R.,
AND TOMKINS, A. Pig latin: a not-so-foreign language
for data processing. In SIGMOD ’08: Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data (2008), pp. 1099-1110.
SCHIFFEL, U., SUSSKRAUT, M., AND FETZER, C.
An-encoding compiler: Building safety-critical systems
with commodity hardware. In The 28th International
Conference on Computer Safety, Reliability and
Security (SafeComp 2009) (2009).

SCHROEDER, B., PINHEIRO, E., AND WEBER, W.-D.
Dram errors in the wild: a large-scale field study. In
SIGMETRICS ’09: Proceedings of the eleventh
international joint conference on Measurement and
modeling of computer systems (2009), pp. 193-204.
Song, Y. J., JUNQUEIRA, F., AND REED, B. BFT for
the skeptics. In BFTWS: Affiliated with DISC (2009).
WENCHAO, Z. Fault management in distributed
systems. Tech. Rep. MS-CIS-10-03, University of
Pennsylvania Department of Computer and
Information Science, 2010.

Yu, Y., IsArD, M., FETTERLY, D., BuDIU, M.,
ULFAR ERLINGSSON, KUMAR, P., AND CURREY, G. J.
Dryadling: A system for general-purpose distributed
data-parallel computing using a high-level language.
In OSDI °08: 8th USENIX Symposium on Operating
Systems Design and Implementation (2008).





