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Abstract Approximate computing is increasingly used for speeding up computa-
tions and efficiently utilizing the computing resources. The idea behind approximate
computing is to return an approximate answer instead of the exact answer for user
queries. The trick is to choose a representative sample of the data for computing in-
stead of using the entire data. As a result, it allows users to trade-off query accuracy
for response time, enabling interactive queries over massive data by running queries
on data samples and presenting results annotated with meaningful error bars. At
the same time, another technique called incremental computing tries to achieve the
same goals as approximate computing, i.e., speeding up job execution and utilizing
resource efficiently. Incremental computing relies on the memoization of interme-
diate results of sub-computations, and reusing these memoized results across jobs.
This work makes the observation that these two computing paradigms are comple-
mentary, and can be married together! The idea is quite simple: design a sampling
algorithm that biases the sample selection to the memoized data items from previ-
ous runs. To realize this idea, an online stratified sampling algorithm is designed.
The algorithm uses self-adjusting computation to produce an incrementally updated
approximate output with bounded error. The algorithm is implemented in a data
analytics system called INCAPPROX.
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1 Introduction

Stream analytics systems are an integral part of modern online services. These sys-
tems are extensively used for transforming raw data into useful information. Much
of this raw data arrives as a continuous data stream and in huge volumes, requir-
ing real-time stream processing based on parallel and distributed computing frame-
works [1, 2, 13, 48, 61].

Near real-time processing of data streams has two desirable, but contradictory
design requirements [48, 61]: (i) achieving low latency; and (ii) efficient resource
utilization. For instance, the low-latency requirement can be met by employing more
computing resources and parallelizing the application logic over the distributed in-
frastructure. Since most data analytics frameworks are based on the data-parallel
programming model [24], almost linear scalability can be achieved with increased
computing resources. However, low-latency comes at the cost of lower throughput
and ineffective utilization of the computing resources. Moreover, in some cases,
processing all data items of the input stream would require more than the available
computing resources to meet the desired SLAs or the latency guarantees.

To strike a balance between these two contradictory goals, there is a surge of
new computing paradigms that prefer to compute over a subset of data items instead
of the entire data stream. Since computing over a subset of the input requires less
time and resources, these computing paradigms can achieve bounded latency and
efficient resource utilization. In particular, two such paradigms are incremental and
approximate computing.
Incremental computing. Incremental computation is based on the observation that
many data analytics jobs operate incrementally by repeatedly invoking the same
application logic or algorithm over an input data that differs slightly from that of
the previous invocation [15, 35, 36]. In such a workflow, small, localized changes to
the input often require only small updates to the output, creating an opportunity to
update the output incrementally instead of recomputing everything from scratch [4,
12]. Since the work done is often proportional to the change size rather than the total
input size, incremental computation can achieve significant performance gains (low
latency) and efficient utilization of computing resources [16, 18, 51].

The most common way for incremental computation is to rely on programmers
to design and implement an application-specific incremental update mechanism (or
a dynamic algorithm) for updating the output as the input changes [19, 21, 25, 26,
30, 34]. While dynamic algorithms can be asymptotically more efficient than re-
computing everything from scratch, research in the algorithms community shows
that these algorithms can be difficult to design, implement and maintain even for
simple problems. Furthermore, these algorithms are studied mostly in the context
of the uniprocessor computing model, making them ill-suited for parallel and dis-
tributed settings which is commonly used for large-scale data analytics.

Recent advancements in self-adjusting computation [4, 5, 6, 40] overcome the
limitations of dynamic algorithms. Self-adjusting computation transparently bene-
fits existing applications, without requiring the design and implementation of dy-



Incremental Approximate Computing 3

namic algorithms. At a high level, self-adjusting computation enables incremental
updates by creating a dynamic dependence graph of the underlying computation,
which records control and data dependencies between the sub-computations. Given
a set of input changes, self-adjusting computation performs change propagation,
where it reuses the memoized intermediate results for all sub-computations that are
unaffected by the input changes, and re-computes only those parts of the compu-
tation that are transitively affected by the input change. As a result, self-adjusting
computation computes only on a subset (“delta” ) of the computation instead of
re-computing everything from scratch.
Approximate computing. Approximate computation is based on the observation
that many data analytics jobs are amenable to an approximate, rather than the exact
output [27, 47, 49, 56]. For such an approximate workflow, it is possible to trade ac-
curacy by computing over a partial subset instead of the entire input data to achieve
low latency and efficient utilization of resources.

Over the last two decades, researchers in the database community proposed many
techniques for approximate computing including sampling [9, 32], sketches [23],
and online aggregation [37]. These techniques make different trade-offs with re-
spect to the output quality, supported query interface, and workload. However, the
early work in approximate computing was mainly targeted towards the centralized
database architecture, and it was unclear whether these techniques could be ex-
tended in the context of big data analytics.

Recently, sampling based approaches have been successfully adopted for dis-
tributed data analytics [8, 33]. These systems show that it is possible to have a
trade-off between the output accuracy and performance gains (also efficient resource
utilization) by employing sampling-based approaches for computing over a subset
of data items. However, these “big data” systems target batch processing workflow
and cannot provide required low-latency guarantees for stream analytics.
Combining incremental and approximate computing. This paper makes the ob-
servation that the two computing paradigms, incremental and approximate comput-
ing, are complementary. Both computing paradigms rely on computing over a subset
of data items instead of the entire dataset to achieve low latency and efficient clus-
ter utilization. Therefore, this paper proposes to combine these paradigms together
in order to leverage the benefits of both. Furthermore, incremental updates can be
achieved without requiring the design and implementation of application-specific
dynamic algorithms, and support approximate computing for stream analytics.

The high-level idea is to design a sampling algorithm that biases the sample se-
lection to the memoized data items from previous runs. This idea is realized by
designing an online sampling algorithm that selects a representative subset of data
items from the input data stream. Thereafter, the sample is biased to include data
items for which already there are memoized results from previous runs, while pre-
serving the proportional allocation of data items of different (strata) distributions.
Next, the user-specified streaming query is performed on this biased sample by mak-
ing use of self-adjusting computation and the user is provided with an incrementally
updated approximate output with error bounds.
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2 INCAPPROX

2.1 System Overview

INCAPPROX is designed for real-time data analytics on online data streams. At
the high level, the online data stream consists of data items from diverse sources
of events or sub-streams. INCAPPROX uses a stream aggregator (e.g., Apache
Kafka [3]) that integrates data from these sub-streams, and thereafter, the system
reads this integrated data stream as the input.

INCAPPROX facilitates user querying on this data stream and supports a user
interface that consists of a streaming query and a query budget. The user submits
the streaming query to the system as well as specifies a query budget. The query
budget can either be in the form of latency guarantees/SLAs for data processing,
desired result accuracy, or computing resources available for query processing. IN-
CAPPROX makes sure that the computation done over the data remains within the
specified budget. To achieve this, the system makes use of a mixture of incremental
and approximating computing for real-time processing over the input data stream,
and emits the query result along with the confidence interval or error bounds.

2.2 System Model

In this section, the system model assumed in this work is presented.
Programming model. INCAPPROX supports a batched stream processing program-
ming model. In batched stream processing, the online data stream is divided into
small batches or sets of records; and for each batch a distributed data-parallel job is
launched to produce the output.
Computation model. The computation model of INCAPPROX for stream process-
ing is sliding window computations. In this model the computation window slides
over the input data stream, where new arriving input data items are added to the
window and the old data items are dropped from the window as they become less
relevant to the analysis.

In sliding window computations, there is a substantial overlap of data items be-
tween the two successive computation windows, especially, when the size of the
window is large relative to the slide interval. This overlap of unchanged data-items
provides an opportunity to update the output incrementally.
Assumptions. INCAPPROX makes the following assumptions. Possible methods to
enforce them are discussed in §3 and in the paper [39].

1. This work assumes that the input stream is stratified based on the source of event,
i.e., the data items within each stratum follow the same distribution, and are
mutually independent. Here a stratum refers to one sub-stream. If multiple sub-
streams have the same distribution, they are combined to form a stratum.
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2. This work assumes the existence of a virtual function that takes the user specified
budget as the input and outputs the sample size for each window based on the
budget.

2.3 Building Blocks

Techniques and the motivation behind INCAPPROX’s design choices are briefly de-
scribed.
Stratified sampling. In a streaming environment, since the window size might be
very large, for a realistic rate of execution, INCAPPROX performs approximation
using samples taken within the window. But the data stream might consist of data
from disparate events. As such, INCAPPROX needs to make sure that every sub-
stream is considered fairly to have a representative sample from each sub-stream.
For this the system uses stratified sampling [9]. Stratified sampling ensures that
data from every stratum is selected and none of the minorities are excluded. For
statistical precision, INCAPPROX uses proportional allocation of each sub-stream to
the sample [10]. It ensures that the sample size of each sub-stream is in proportion
to the size of sub-stream in the whole window.
Self-adjusting computation. For incremental sliding window computations, IN-
CAPPROX uses self-adjusting computation [4, 5, 6] to re-use the intermediate re-
sults of sub-computations across successive runs of jobs. In this technique the sys-
tem maintains a dependence graph between sub-computations of a job, and reuse
memoized results for sub-computations that are unaffected by the changed input in
the computation window.

2.4 Algorithm

This section presents an overview algorithm of INCAPPROX. The algorithm com-
putes a user-specified streaming query as a sliding window computation over the
input data stream. The user also specifies a query budget for executing the query,
which is used to derive the sample size (sampleSize) for the window using a cost
function (see §2.2 and §3). The cost function ensures that processing remains within
the query budget.

For each window, INCAPPROX first adjusts the computation window to the cur-
rent start time t by removing all old data items from the window (timestamp < t).
Similarly, the system also drops all old data items from the list of memoized items
(memo), and the respective memoized results of all sub-computations that are de-
pendent on those old data items.

Next, the system reads the new incoming data items in the window. Thereafter, it
performs proportional stratified sampling (detailed in [39]) on the window to select
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a sample of size provided by the cost function. The stratified sampling algorithm
ensures that samples from all strata are proportional, and no stratum is neglected.

Next, INCAPPROX biases the stratified sample to include items from the mem-
oized sample, in order to enable the reuse of memoized results from previous sub-
computations. The biased sampling algorithm biases samples specific to each stra-
tum, to ensure reuse, and at the same time, retain proportional allocation [39].

Thereafter, on this biased sample, the system runs the user specified query as a
data-parallel job incrementally, i.e., it reuses the memoized results for all data items
that are unchanged in the window, and update the output based on the changed (or
new) data items. After the job finishes, the system memoize all the items in the
sample and their respective sub-computation results for reuse for the subsequent
windows [39].

The job provides an estimated output which is bound to a range of error due to
approximation. INCAPPROX performs error estimation to estimate this error bound
and define a confidence interval for the result as: out put ± error bound [39].

The entire process repeats for the next window, with updated windowing parame-
ters and the sample size. (Note that the query budget can be updated across windows
during the course of stream processing to adapt to the user’s requirements.)

2.5 Estimation of Error Bounds

In order to provide a confidence interval for the approximate output, the error bounds
are computed due to approximation.
Approximation for aggregate functions. Aggregate functions require results based
on all the data items or groups of data items in the population. But since the system
computes only over a small sample from the population, an estimated result based
on the weightage of the sample can be obtained.

Consider an input stream S, within a window, consisting of n disjoint strata S1,
S2 ..., Sn, i.e., S = ∑

n
i=1 Si. Suppose the ith stratum Si has Bi items and each item

j has an associated value vi j. Consider an example of taking sum of these values
across the whole window, represented as ∑

n
i=1(∑

Bi
j=1 vi j). To find an approximate

sum, INCAPPROX first selects a sample from the window based on stratified and
biased sampling, i.e., from each ith stratum Si in the window, the system samples
bi items. Then it estimates the sum from this sample as: τ̂ = ∑

n
i=1(

Bi
bi

∑
bi
j=1 vi j)± ε

where the error bound ε is defined as:

ε = t f ,1− α
2

√
V̂ar(τ̂) (1)

Here, t f ,1− α
2

is the value of the t-distribution (i.e., t-score) with f degrees of freedom
and α = 1 − confidence level. The degree of freedom f is expressed as:

f =
n

∑
i=1

bi −n (2)
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The estimated variance for sum, V̂ar(τ̂) is represented as:

V̂ar(τ̂) =
n

∑
i=1

Bi ∗ (Bi −bi)
s2

i
bi

(3)

where s2
i is the population variance in the ith stratum. Since the bias sampling is

such that the statistics of stratified sampling is preserved, the statistical theories [57]
for stratified sampling has been used to compute the error bound.

Currently, INCAPPROX supports error estimation only for aggregate queries. For
supporting queries that compute extreme values, such as minimum and maximum,
the system can make use of extreme value theory [22, 41] to compute the error
bounds.
Error bound estimation. For error bound estimation, first the sample statistic used
to estimate a population parameter is identified, e.g., sum, and a desired confidence
level is selected, e.g., 95%. In order to compute the margin of error ε using t-score
as given in Equation 1, the sampling distribution must be nearly normal. The Cen-
tral Limit Theorem (CLT) states that when the size of sample is sufficiently large
(>= 30), then the sampling distribution of a statistic approximates to normal dis-
tribution, regardless of the underlying distribution of values in the data [57]. Hence,
INCAPPROX computes t-score using a t-distribution calculator [46], with the given
degree of freedom f (see Equation 2), and cumulative probability as 1−α/2 where
α = 1 − confidence level [43]. Thereafter, the system estimates the variance using
the corresponding equation for the sample statistic considered (for sum, the Equa-
tion is 3). Finally, the system uses this t-score and estimated variance of the sample
statistic and computes the margin of error using Equation 1.

3 Discussion

The design of INCAPPROX is based on the assumptions in §2.2. Solving these as-
sumptions is beyond the scope of this paper; however, this section discusses some
of the approaches that could be used to meet the assumptions.
I: Stratification of sub-streams. Currently this work assumes that sub-streams are
stratified, i.e., the data items of individual sub-streams have the same distribution.
However, it may not be the case. Next, two alternative approaches are discussed,
namely bootstrap [28] and a semi-supervised learning algorithm [45] to classify
evolving data streams. Bootstrap [28, 29] is a non parametric re-sampling technique
used to estimate parameters of a population. It works by randomly selecting a large
number of bootstrap samples with replacement and with the same size as in the
original sample. Unknown parameters of a population can be estimated by averaging
these bootstrap samples. Such a bootstrap-based classifier could be created from the
initial reservoir of data, and the classifier could be used to classify sub-streams.
Alternatively, a semi-supervised algorithm [45] can be employed to stratify a data
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stream. This algorithm manipulates both unlabeled and labeled data items to train a
classification model.
II: Virtual cost function. Secondly, this work assume that there exists a virtual
function that computes the sample-size based on the user-specified query budget.
The query budget could be specified as either available computing resources or la-
tency requirements. Two existing approaches—Pulsar [11] and resource prediction
model [58, 59, 60, 31, 44] can be used to design such a virtual function for given
computing resources and latency requirements, respectively (see details in [39]).

4 Related Work

INCAPPROX builds on two computing paradigms, namely, incremental and approx-
imate computing. This section provides a survey of techniques proposed in these
two paradigms.
Incremental computation. To apply incremental computing, the earlier big data
systems (Google’s Percolator [50], and Yahoo’s CBP [42]) proposed an alterna-
tive programming model where the programmer is asked to implement an efficient
incremental-update mechanism. However, these systems depart from the existing
programming model, and also require implementation of dynamic algorithms on
per-application basis, which could be difficult to design and implement.

To overcome the limitations, researchers proposed transparent approaches for in-
cremental computation. Examples of transparent systems include Incoop [18, 17],
DryadInc [51], Slider [13, 14], and NOVA [20]. These systems leverage the un-
derlying data-parallel programming model such as MapReduce [24] or Dryad [38]
for supporting incremental computation. INCAPPROX was built on transparent big
data systems for incremental computation. In particular, the system leverages the
advancements in self-adjusting computation [4, 12] to improve the efficiency of in-
cremental computation. In contrast to the existing approaches, INCAPPROX extends
incremental computation with the idea of approximation, thus further improving the
performance.
Approximate computation. Approximation techniques such as sampling [9], sketches
[23], and online aggregation [37] have been well-studied over the decades in the
context of traditional (centralized) database systems. In the last five years, sampling-
based techniques have been successfully employed in many distributed data an-
alytics systems [8, 33, 53, 52]. The systems such as ApproxHadoop [33] and
BlinkDB [7, 8] showed that it is possible to achieve the benefits of approximate com-
puting also in the context of distributed big data analytics. However, these systems
target batch processing and are not able to support low-latency stream analytics.

Recently, StreamApprox [55, 54] proposed an online sampling algorithm to “on-
the-fly” take samples of input data streams in a distributed manner. Interestingly, the
sampling algorithm is generalizable to two prominent types of stream processing
models: batched and pipelined stream processing models. Lastly, PrivApprox [53,
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52] employed a combination of randomized response and approximate computation
to support privacy-preserving stream analytics.

INCAPPROX builds on the advancements in approximate computing for big data
analytics. However, the system is different from the existing approximate computing
systems in two crucial aspects. First, unlike the existing systems, ApproxHadoop
and BlinkDB, that are designed for batch processing—INCAPPROX is targeted at
stream processing. Second, the system benefits from both approximate and incre-
mental computing.

5 Conclusion

This paper presents the combination of incremental and approximate computations.
The proposed approach transparently benefits unmodified applications, i.e., pro-
grammers do not have to design and implement application-specific dynamic al-
gorithms or sampling techniques. The approach is based on the observation that
both computing paradigms rely on computing over a subset of data items instead of
computing over the entire dataset. These two paradigms are combined by designing
a sampling algorithm that biases the sample selection to the memoized data items
from previous runs.
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