
Inspector
Data Provenance using Intel Processor Trace (PT)

Jörg Thalheim
Pramod Bhatotia & Christof Fetzer

Technical University of Dresden

2

...records transformations made on data to explain how the
computation was performed

Data Provenance

Dependability:

Debugging
programs

Motivation: Use-case examples

3

Security:

Dynamic Information
Flow Tracking (DIFT)

Efficiency:

Memory management
for NUMA

● Currently limited either to sequential programs

For parallel programs:

● Require manual annotations w/ new type systems
● Restrictive programming model & synchronization primitives

Research gap

4

Design goals

5

● Transparency

● Generality

● Efficiency

○ Unmodified multithreaded programs

○ Shared-memory model w/ POSIX sync. primitives

○ Low overheads using a parallel provenance algorithm

Inspector: Easy to use!

6

1. Preloads the Inspector library

LD_PRELOAD=libinspector.so

2. Executes “existing binaries” w/o re-compilation

3. Writes the provenance log to ./perf.data

$ inspector -- ./<program> <arguments>

✓ Motivation
❏ Design
❏ Implementation
❏ Evaluation

Agenda

7

Behind the scenes

Computation

8

step#3
Dependencies

Provenance graph
Sub-computations

step#1
Divide

Read Write

{x,y} {x}

{y} {}

step#2
Read/write

set

Read/write sets

A simple example

9

Shared variables: x and y

Thread 1
lock();
if (flag ==0)
 x = ++y;
else
 x = (++y) + 5;
unlock();

lock();
y = y/2;
unlock();

Thread 2

lock();
y = 2 * x;
unlock();

Step #1: Sub-computations

10

Shared variables: x and y

Approaches:Thread 1
lock();
if (flag ==0)
 x = ++y;
else
 x = (++y) + 5;
unlock();

lock();
y = y/2;
unlock();

Thread 2

lock();
y = 2 * x;
unlock();

Coarsed Grained
○ Whole Thread
→ imprecise

Fine Grained
○ Every Instruction
→ expensive

Middle Ground
○ Sub-Computations

Step #2: Read-write sets

11

Shared variables: x and y

Thread 1
lock();
if (flag ==0)
 x = ++y;
else
 x = (++y) + 5;
unlock();

lock();
y = y/2;
unlock();

Thread 2

lock();
y = 2 * x;
unlock();

read = {y};
write = {x, y};

read = {y};
write = {y};

read = {x};
write = {y};

We record three dependencies:

Step #3: Provenance graph

12

A. Control
B. Schedule
C. Data

A: Control dependencies

13

Thread 1
lock();
if (flag ==0)
 x = ++y;
else
 x = (++y) + 5;
unlock();

lock();
y = y/2;
unlock();

Shared variables: x and y

Thread 2

lock();
y = 2 * x;
unlock();

B: Synchronization dependencies

14

Thread 1
lock();
if (flag ==0)
 x = ++y;
else
 x = (++y) + 5;
unlock();

Shared variables: x and y

Thread 2

lock();
y = y/2;
unlock();

lock();
y = 2 * x;
unlock();

lock();
y = 2 * x;
unlock();

lock();
y = y/2;
unlock();

Change of Schedule

C: Data dependencies

15

Shared variables: x and y

Thread 1
lock();
if (flag ==0)
 x = ++y;
else
 x = (++y) + 5;
unlock();

lock();
y = y/2;
unlock();

Thread 2

lock();
y = 2 * x;
unlock();

read = {y};
write = {x,y};

read = {y};
write = {y};

read = {x};
write = {y};

Concurrent Provenance Graph (CPG)

16

Thread 1
lock();
if (flag ==0)
 x = ++y;
else
 x = (++y) + 5;
unlock();

lock();
y = y/2;
unlock();

read = {y};
write = {x,y};

read = {y};
write = {y};

read = {x};
write = {y};

Shared variables: x and y

Edges: Dependencies
1. Control edges

3. Data-dependence edges

2. Synchronization edges

Thread 2

lock();
y = 2 * x;
unlock();

Vertices: Sub-Computations

✓ Motivation
✓ Design
❏ Implementation
❏ Evaluation

Agenda

17

Inspector architecture

18

Threading library
(Data & synchronization dependencies)

OS support for Intel PT
(Control dependency)

MMU Intel PT

Application
(unmodified executable)

Perf
Provenance
graph (CPG)

Inspector

✓ Motivation
✓ Design
✓ Implementation
❏ Evaluation

Agenda

19

Questions:

1. Performance overheads
2. Sources for these overheads

Evaluation

20

More results in the paper

Experimental setup:

● Benchmarks: Phoenix 2.0 and PARSEC 3.0
● Platform: Intel Broadwell CPU with 8 cores (16 hyper-threads)

Q1: Performance overheads

21

Threads

2

4

8

16

14

15

Q2: Source of the overheads

22

Threads

Total Overheads

Threading library

OS Support

Inspector: Data provenance using Intel Processor Trace (PT)

● Transparent: Targets unmodified multithreaded programs
● General: Supports the shared-memory model w/ POSIX sync primitives
● Efficient: Employs a parallel provenance algorithm

Usage: A dynamically linkable shared library
● Source Code: https://github.com/Mic92/inspector

Summary

23

https://github.com/Mic92/inspector

