Brief Announcement: Modelling MapReduce for Optimal
Execution in the Cloud

Alexander Wiedert, Pramod Bhatotia’, Ansley Post't, and Rodrigo Rodrigues?
TMax Planck Institute for Software Systems (MPI-SWS) and fRice University
{awieder, bhatotia, abpost, rodrigor}@mpi-sws.org

ABSTRACT

We describe a model for MapReduce computations that can
be used to optimize the increasingly complex choice of re-
sources that cloud customers purchase.

Categories and Subject Descriptors
D.4.0 [Software]: Operating Systems— General

General Terms

Design, Performance, Management

1. INTRODUCTION

Cloud services are being increasingly used to outsource
computations. But as cloud services become more popular,
the variety of services that are offered is becoming over-
whelming. In this research we aim at providing a model
based on linear programming for cloud computations that
enables customers to make an optimal choice of which re-
sources to allocate, e.g.., one that minimizes monetary costs.
This can then be integrated into a system [3] that automates
resource allocation.

This paper focuses on modelling a restricted type of com-
putations, namely MapReduce [2] jobs. This is not only
a relevant programming paradigm that is increasingly used
for large-scale computational jobs, but will also offer us a
starting point from which we can generalize our techniques.

2. THE SCHEDULING PROBLEM

A MapReduce job consists of two distinct phases, the Map
phase and the Reduce phase, that are strictly processed in
that order without overlap. Each phase is a distributed exe-
cution of parallelizable computations, which scales well with
the number of processing nodes. To find an optimal sched-
ule and resource allocation strategy for MapReduce, we first
model each phase independently using dynamic linear pro-
gramming, and later combine both phases to determine a
globally optimal strategy.

2.1 Basic Model

Cloud computing providers offer various services with dif-
ferent pricing schemes and performance characteristics. We
consider m distinct cloud services (e.g., Amazon EC2, Ama-
zon S3), F1, ..., Fin, that provide different types of resources

Copyright is held by the author/owner(s).
PODC’10, July 25-28, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

408

(e.g., computing cycles, storage). Let T' be the upper bound
for the deadline to finish the computation in terms of number
of time intervals, which are the granularity of the execution
progress (e.g., of one hour each).

2.1.1 Storage Model

To execute the Map phase, the input data from the source
storage has to be uploaded to a storage service in the cloud
for processing. We model this upload in a time-step fashion
for T intervals. For interval t, the source storage contains
source; amount of data and upload; ;) denotes the amount
of data uploaded from the source storage to the storage ser-
vice F;. The total uploaded data expressed as storeln(;
will be stored in F; until the execution phase is finished.
Data storage and upload is flow preserving, which we ex-
press by the following constraints:

m
Vi, t: source; — E upload(i,t) = sourcei+1
i=1

)
(2)

The available upload speed can be expressed in the model by
adding a constraint that restricts the total amount of data
in each time-step to the upload capacity.

Vi, t: storeln 1) + upload;) = storeln

2.1.2 Computation Model

We now extend our model to computations, in which the
data uploaded to the cloud is processed, and whose result is
stored in a storage service. We also model data processing
in a time-step manner for 7' intervals. In interval ¢, the
uploaded data storeln(;, . in storage service Fj, can be
processed by a computational service and then the result
storeOut ;, 1) is stored at Fi,.

The amount of data that is processed in each time interval
t is bounded by the number of computing nodes that we
choose to run during that interval. Also, we can only process
input data in the cloud that has already been uploaded.
Let proc; s denote the amount of data which is processed
by cloud service F; in time interval t. We can therefore
represent the constraints for computations as follows:

Vi, t: Zproc(i,t) < nodes ;) - capacity;

t m
vt : z Zproc(iyt/) <

t/=11=1

®3)

m

Z storeln;
i=1

Here, nodes(; +) denotes the number of computing nodes
rented in interval ¢ from computing service F;, and capacity;
denotes the processing capacity of a single node for F;.

(4)

2.1.3 Execution Cost

The monetary cost of the Map phase can be expressed as
the cumulative sum of the cost incurred in each interval over
time T'. For time interval ¢, the cost can be expressed as the
sum of the cost incurred for uploading the data, processing
the data and storing the result in cloud. We calculate the
cost for each time interval based on the amount of resources
consumed per cloud service. For instance, the computation
cost in time interval ¢ is the number of machine-hours used
in this interval multiplied by the price per machine-hour.
Formally, we express the total monetary cost over T as fol-
lows:

Let y(;,+) be the number of units of cloud service F; pur-
chased for time interval ¢, and let b; be the price per unit
for F;. The total cost C for such a configuration is

C = ZZ(bz “Y(it))

t=1 i=1

()

Note that this monetary cost, as well as other characteris-
tics captured in our model such as execution time, can be
used in the objective function for optimization. Since no
negative amount of resources can be purchased, we auto-
matically have the constraints Vi : y;) > 0. This applies
to all variables we used throughout this paper.

2.2 Dynamic Pricing

Recently, Amazon started offering spot market pricing,
where customers bid the price they want on unused Amazon
EC2 capacity, and the price tag reflects the current supply
and demand. Furthermore, customers can use the history
of spot prices as a predictor of their evolution, to develop a
bidding strategy.

We thus extend our model to include dynamic pricing in
spot markets. Given our model where computations are
divided into discrete time-steps, spot prices can easily be
incorporated by setting the price in each time-step to an
estimated spot price. These estimates could potentially be
derived by extrapolating past pricing patterns. Let E[b; 4]
denote the estimated price per unit of cloud service F; for
time interval . Thus, the modified total cost C’ can be
expressed as follows:

— z Z(E[b(i,t)] “Yeit)

t=1 i=1

2.3 Data Migration

Since we consider multiple storage services in our model,
we may choose to migrate data between them during the
execution. We include migration by adding transitions in
each time-step t from storeln(;, 1) to storeln;, ++1). These
transitions express migrating input data from the storage
services F;, to Fj,. Similarly, we add transitions for migrat-
ing the output data storeOut in each time-step. Note that
the transitions for data migration go from one time-step t to
the next one t+ 1, rather than staying within the same time
step. This allows us to express that data migration is not
completed instantly. The cost for migration can be added
to the storage cost per time-step.

c’ (6)

2.4 Combining Phases

So far we only considered the Map phase in our model.
The Reduce phase can be modelled in a similar manner,

409

except for the fact that we do not include a source storage
or data upload — the Reduce phase takes the result of the
Map phase as the input. Hence, in our model in each time-
step t we add transitions from the output storage of the Map
phase storeOut; 4y to the input storage of the Reduce phase
storeln 41y

We enforce that these two phases cannot overlap by spec-
ifying that the amount of data flowing to the next phase
has either to be 0 or the full output data. We specify this
property as a linear programming constraint using a semi-
continuous variable, that can hold either 0 or the full out-
put data size. After combining the two phases of the job,
we model the download of the final result from the output
storage of the Reduce phase by adding transitions to the
destination storage.

2.5 Resource Overlap

In our previous explanation of the model we have assumed
that each service provides only a single type of resource, ei-
ther storage or computation. However, services can provide
both of them (and potentially other types) simultaneously in
practice. For instance, we can opportunistically store data
on the virtual disk of running VMs, leveraging this spare
resource at a low extra cost.

Our model accommodates this easily, since it distinguishes
cloud services from the resources they provide. Thus, in
addition to the pricing and performance characteristics we
already specify for each cloud service Fi,..., F,,, we also
specify the quantities of other resources Ri,..., R, each of
the services offers. For instance, in this model a pure storage
service like Amazon’s S3 will provide only storage resources
while instances of Amazon’s EC2 service provide both com-
putation and storage resources.

3. CONCLUSIONS

This paper reports on our experience in modelling the
choice of cloud resources that can be acquired to execute
MapReduce computations. We first present a basic model
that includes storage and computation resources; then we
refine it to reflect several alternatives that are presented to
cloud customers.

This exercise is part of a larger effort of building systems
that aid users in making better use of cloud resources. As
such, it opens several avenues of future work, such as build-
ing systems that use this model [3], generalizing the current
model to other types of computational jobs that can be out-
sourced, or allowing the model itself to be inferred automati-
cally from sampling an actual execution of the computation.

4. REFERENCES

[1] Amazon Spot Instances.
http://aws.amazon.com/ec2/spot-instances/

[2] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified

data processing on large clusters. In Proc. of the Sixth

Symposium on Operating Systems Design and

Implementation (OSDI ’04).

WIEDER, A., BHATOTIA, P., PosT, A., AND

RoODRIGUES, R. Conductor: Orchestrating the clouds.

Under submission. Draft available at

http://wuw.mpi-sws.org/ bhatotia/Conductor.pdf

