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Abstract Real-time processing of user data streams in online services inadver-
tently creates tension between the users and analysts: users are looking for stronger
privacy, while analysts desire for higher utility data analytics in real time. To re-
solve this tension, this paper describes the design, implementation and evaluation
of PRIVAPPROX, a data analytics system for privacy-preserving stream processing.
PRIVAPPROX provides three important properties: (i) Privacy: zero-knowledge pri-
vacy guarantee for users, a privacy bound tighter than the state-of-the-art differen-
tial privacy; (ii) Utility: an interface for data analysts to systematically explore the
trade-offs between the output accuracy (with error estimation) and the query exe-
cution budget; (iii) Latency: near real-time stream processing based on a scalable
“synchronization-free” distributed architecture. The key idea behind PRIVAPPROX
is to combine two techniques together, namely, sampling (used for approximate
computation) and randomized response (used for privacy-preserving analytics). The
resulting combination is complementary — it achieves stronger privacy guarantees,
and also improves the performance for stream analytics.
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1 Introduction

Nowadays, many modern online services continuously collect users’ private data for
real-time analytics. This data normally arrives as a data stream and in huge volumes,
requiring real-time stream processing based on distributed systems [16, 1, 3, 2].

In the current ecosystem of data analytics, the analysts usually have direct access
to users’ private data, and must be trusted not to abuse it. However, this trust has
been violated in the past [23, 50, 42, 58]. A pragmatic ecosystem has two desirable,
but contradictory design requirements: (i) stronger privacy guarantees for users, and
(ii) high-utility stream analytics in real time. Users seek stronger privacy, while
analysts strive for high-utility analytics in real time.

To meet these two design requirements, there is a surge of novel computing
paradigms that address these concerns, albeit separately. Two such paradigms are
privacy-preserving analytics to protect user privacy and approximate computation
for real-time analytics.
Privacy-preserving analytics. Recent privacy-preserving analytics systems favor
a distributed architecture to avoid central trust (see §4 for details), where users’
private data is stored locally on their respective client devices. Data analysts use
a publish-subscribe mechanism to perform aggregate queries over the distributed
private dataset of a large number of clients. Thereafter, such systems add noise to
the aggregate output to provide useful privacy guarantees, such as differential pri-
vacy [27]. Unfortunately, these state-of-the-art systems normally deal with single-
shot batch queries, and therefore, these systems cannot be used for real-time stream
analytics.
Approximate computing. Approximate computation is based on the observation
that many data analytics jobs are amenable to an approximate rather than the ex-
act output (see §4 for details). Such applications include speech recognition, com-
puter vision, machine learning, and recommender systems. For such an approxi-
mate workflow, it is possible to trade accuracy by computing over a subset (usually
selected via a sampling mechanism) instead of the entire input dataset. Thereby,
data analytics systems based on approximate computation can achieve low latency
and efficient utilization of resources. However, the existing systems for approximate
computation assume a centralized dataset, where the desired sampling mechanism
can be employed. Thus, existing systems are not compatible with the distributed
privacy-preserving analytics systems.
Combining privacy-preserving analytics and approximate computing. This pa-
per makes the observation that the two computing paradigms, i.e., privacy-preserving
analytics and approximate computation, are complementary. Both paradigms strive
for an approximate instead of the exact output, but they differ in their means and
goals for approximation. Privacy-preserving analytics adds explicit noise to the ag-
gregate query output to protect user privacy, whereas approximate computation re-
lies on a representative sampling of the entire dataset to compute over only a subset
of data items to enable low-latency/efficient analytics. Therefore, this work com-
bines these two existing paradigms together in order to leverage the benefits of both.
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The high-level idea is to achieve privacy (via approximation) by directly computing
over a subset of sampled data items (instead of computing over the entire dataset)
and then adding an explicit noise for privacy preservation.

To realize this combination, this paper presents the design of an approximation
mechanism that also achieves privacy-preserving goals for stream analytics. This
design targets a distributed setting, where users’ private data is stored locally on
their respective personal devices, and an analyst issues a streaming query for ana-
lytics over the distributed private dataset of users. The analyst’s streaming query is
executed on the users’ data periodically (a configurable epoch) and the query results
are transmitted to a centralized aggregator via a set of proxies. The analyst interfaces
with the aggregator to get the aggregate query output periodically.

Two core techniques are employed to achieve the goal. Firstly, sampling [48] is
directly employed at the user site for approximate computation, where each user ran-
domly decides whether to participate in answering the query in the current epoch.
Since the sampling is employed at the data source, instead of sampling at a cen-
tralized infrastructure, the proposed approach can squeeze out the desired data size
(by controlling the sampling parameter) from the very first stage in the analytics
pipeline, which is essential in low-latency environments.

Secondly, if the user participates in the query answering process, a randomized
response [31] mechanism is performed to add noise to the query output at the user
site, again locally at the source of the data in a decentralized fashion. In particular,
each user locally randomizes the truthful answer to the query to achieve the differ-
ential privacy guarantees (§3.2.2). Since the noise is added at the source of data,
instead of adding the explicit noise to the aggregate output at a trusted aggregator
or proxies, the proposed approach enables a truly “synchronization-free” distributed
architecture, which requires no coordination among proxies and the aggregator for
the mandated noise addition.

The last, but not the least, silver bullet of the design: it turns out that the combina-
tion of the two aforementioned techniques (i.e., sampling and randomized response)
leads us to achieve zero-knowledge privacy [35], a privacy bound tighter than the
state-of-the-art differential privacy [27].

To summarize, this paper presents the design of PRIVAPPROX—a practical sys-
tem for privacy-preserving stream analytics in real time. In particular, the system is
a novel combination of the sampling and randomized response techniques, as well
as a scalable “synchronization-free” routing scheme which employs a light-weight
XOR-based encryption scheme [21]. The resulting system ensures zero-knowledge
privacy, anonymization, and unlinkability for users (§2.2).
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2 Overview

2.1 System Architecture

PRIVAPPROX is designed for privacy-preserving stream analytics on distributed
users’ private dataset. This system consists of four main components: clients, prox-
ies, aggregator, and analysts.

Clients locally store users’ private data on their respective personal devices, and
subscribe to queries from the system. Analysts publish streaming queries to the sys-
tem, and also specify a query execution budget. The query execution budget can
either be in the form of latency guarantees/SLAs, output quality/accuracy, or the
computing resources for query processing. PRIVAPPROX ensures that the computa-
tion remains within the specified budget.

At a high-level, the system works as follows: a query published by an analyst
is distributed to clients via the aggregator and proxies. Clients answer the analyst’s
query locally over the users’ private data using a privacy-preserving mechanism.
Client answers are transmitted to the aggregator via anonymizing proxies. The ag-
gregator aggregates received answers from the clients to provide privacy-preserving
stream analytics to the analyst.

2.2 System Model

Query model. PRIVAPPROX supports the SQL query language for analysts to for-
mulate streaming queries, which are executed periodically at the clients as sliding
window computations [9]. While queries can be complex, the results of a query are
expressed as counts within histogram buckets, i.e., each bucket represents a range
of the query’s answer values. Specifically, each query answer is represented in the
form of binary buckets, where each bucket stores a value ‘1’ or ‘0’ depending on
whether or not the answer falls into the value range represented by that bucket. For
example, an analyst can learn the driving speed distribution across all vehicles in
San Francisco by formulating an SQL query “SELECT speed FROM vehicle
WHERE location=‘San Francisco’”. The analyst can then define 12 an-
swer buckets on speed: ‘0’, ‘1∼10’, ‘11∼20’, · · · , ‘81∼90’, ‘91∼100’, and ‘> 100’.
If a vehicle is moving at 15 mph in San Francisco, it answers ‘1’ for the third bucket
and ‘0’ for all others.

The query model supports not only numeric queries as described above, but also
non-numeric queries. For non-numeric queries, each bucket is specified by a match-
ing rule or a regular expression. Note that, at first glance, the query model may
appear simple; however, it has been shown to be effective for a wide-range of ana-
lytics algorithms [14, 15].
Threat model. Analysts are potentially malicious. They may try to violate the PRI-
VAPPROX’s privacy model (described later), i.e., de-anonymize clients, build pro-
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files through the linkage of queries and answers, or remove the added noise from
answers.

Clients are potentially malicious. They could generate false or invalid responses
to distort the query result for the analyst. However, the proposed system does not
defend against the Sybil attack [26], which is beyond the scope of this work [62].

Proxies are also potentially malicious. They may transmit messages between
clients and the aggregator in contravention of the system protocols. PRIVAPPROX
includes at least two proxies, and there are at least two proxies which do not collude
with each other. The aggregator is assumed to be honest-but-curious. The aggregator
faithfully conforms to the system protocols, but may try to exploit the information
about clients. The aggregator does not collude with any proxy nor the analyst.
Privacy model. PRIVAPPROX provides three important privacy properties: (i) zero-
knowledge privacy, (ii) anonymity, and (iii) unlinkability.

All aggregate query results in the system are independently produced under
the zero-knowledge privacy guarantees [35]. The zero-knowledge privacy metric
builds upon differential privacy [27], and provides a tighter bound on privacy guar-
antees compared to differential privacy. Informally, zero-knowledge privacy states
that essentially everything that an adversary can learn from the output of an zero-
knowledge private mechanism could also be learned using the aggregate informa-
tion. Anonymity means that no system component can associate query answers or
query requests with a specific client. Finally, unlinkability means that no system
component can join any pair of query requests or answers to the same client, even to
the same anonymous client. The formal definition, analysis, and proof are described
in the technical report [52].

3 Design

PRIVAPPROX consists of two main phases: submitting queries and answering
queries. In the first phase, an analyst submits a query (along with the execution
budget) to clients via the aggregator and proxies. In the second phase, the query is
answered by the clients in the reverse direction.

3.1 Submitting Queries

To perform statistical analysis over users’ private data streams, an analyst creates a
query using the query model described in §2.2. In particular, each query consists of
the following fields, and is signed by the analyst for non-repudiation:

Query := 〈QID,SQL,A[n], f ,w,δ 〉 (1)
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• QID denotes a unique identifier of the query. This can be generated by concate-
nating the identifier of the analyst with a serial number unique to the analyst.

• SQL denotes the actual SQL query, which is passed on to clients and executed on
their respective personal data.

• A[n] denotes the format of a client’s answer to the query. The answer is an n-bit
vector where each bit associates with a possible answer value in the form of a
“0” or “1” per index (or answer value range).

• f denotes the answer frequency, i.e., how often the query needs to be executed at
clients.

• w denotes the window length for sliding window computations [8]. For example,
an analyst may only want to aggregate query results for the last ten minutes,
which means the window length is ten minutes.

• δ denotes the sliding interval for sliding window computations. For example, an
analyst may want to update the query results every one minute, and so the sliding
interval is set to one minute.

After forming the query, the analyst sends the query, along with the query execu-
tion budget, to the aggregator. Once receiving the pair of the query and query budget
from the analyst, the aggregator first converts the query budget into system param-
eters for sampling and randomization. The system operator can set the sampling
fraction using resource prediction model [65, 64, 66] for any given SLA. Hereafter,
the aggregator forwards the query and the converted system parameters to clients
via proxies.

3.2 Answering Queries

After receiving the query and system parameters, the query is answered by clients
and processed by the system to produce the result for the analyst. The query an-
swering process involves four steps including (i) sampling at clients for low-latency
approximation; (ii) randomizing answers for privacy preservation; (iii) transmitting
answers via proxies for anonymization and unlinkability; and finally, (iv) aggregat-
ing answers with error estimation to give a confidence level on the approximate
result. (The detailed algorithms are covered in [52, 53]).

3.2.1 Step I: Sampling at Clients

PRIVAPPROX makes use of approximate computation to achieve low-latency exe-
cution by computing over a subset of data items instead of the entire input dataset.
Specifically, the system builds on sampling-based techniques [4, 36, 44, 55, 54].
To keep the private data stored at individual clients, PRIVAPPROX applies an input
data sampling mechanism locally at the clients. In particular, the system uses Simple
Random Sampling (SRS) [48].
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Note that, this work assumes that all clients produce the input stream with data
items following the same distribution, i.e., all clients’ data streams belong to the
same stratum. The sampling mechanism can be further extended with the stratified
sampling technique [44, 55, 54] to deal with varying distributions of data streams.
The algorithm and evaluation of stratified sampling are covered in the technical
report [52].

3.2.2 Step II: Answering Queries at Clients

Clients that participate in the query answering process make use of the randomized
response technique [31] to preserve answer privacy, with no synchronization among
clients. Randomized response works as follows: suppose an analyst sends a query
to individuals to obtain the statistical result about a sensitive property. To answer
the query, a client locally randomizes its answer to the query [31]. Specifically,
the client flips a coin, if it comes up heads, then the client responds its truthful
answer; otherwise, the client flips a second coin and responds “Yes” if it comes up
heads or “No” if it comes up tails. The privacy is preserved via the ability to refuse
responding truthful answers (see details in [53, 52]).

It is worth mentioning that, combining the randomized response with the sam-
pling technique described in Step I, PRIVAPPROX achieves not only differential
privacy but also zero-knowledge privacy [35] which is a privacy bound tighter than
differential privacy. The detailed proof is described in the technical report [52].

3.2.3 Step III: Transmitting Answers via Proxies

After producing randomized responses, clients transmit them to the aggregator
via the proxies. To achieve anonymity and unlinkability of the clients against
the aggregator and analysts, PRIVAPPROX utilizes the XOR-based encryption to-
gether with source rewriting, which has been used for anonymous communica-
tions [22, 21, 57, 25]. The underlying idea of this encryption is simple: if Alice
wants to send a message M of length l to Bob, then Alice and Bob share a secret MK
(in the form of a random bit-string of length l). To transmit the message M privately,
Alice sends an encrypted message ‘ME = M⊕MK’ to Bob, where ‘⊕’ denotes the
bit-wise XOR operation. To decrypt the message, Bob again uses the bit-wise XOR
operation: M = ME ⊕MK (see details in [53, 52]).

3.2.4 Step IV: Generating Result at the Aggregator

At the aggregator, all data streams (〈MID,ME〉 and 〈MID,MKi〉) are received, and
can be joined together to obtain a unified data stream. Specifically, the associated
ME and MKi are paired by using the message identifier MID. To decrypt the original
randomized message M from the client, the XOR operation is performed over ME
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and MK : M = ME⊕MK with MK being the XOR of all MKi : MK =
⊕n

i=2 MKi . As the
aggregator cannot identify which of the received messages is ME , it just XORs all
the n received messages to decrypt M.

Note that an adversarial client might answer a query many times in an attempt
to distort the query result. However, this problem can be handled, for example, by
applying the triple splitting technique [21].
Error bound estimation. PRIVAPPROX provides an error bound estimation for the
aggregate query results. The accuracy loss in PRIVAPPROX is caused by two pro-
cesses: (i) sampling and (ii) randomized response. Since the accuracy loss of these
two processes is statistically independent (see details in [53, 52]), PRIVAPPROX
estimates the accuracy loss of each process separately. In addition, independent of
the error induced by randomized response, the error coming from sampling is sim-
ply being added upon. Following this, the system sums up both independently es-
timated errors to provide the total error bound of the query results. To estimate the
accuracy loss of the randomized response process, PRIVAPPROX makes use of an
experimental method. It performs several micro-benchmarks at the beginning of the
query answering process (without performing the sampling process) to estimate the
accuracy loss caused by randomized response. On the other hand, to estimate the
accuracy loss of the sampling process, PRIVAPPROX applies the statistical theory of
the sampling techniques (see details in [53, 52]).

4 Related Work

Privacy-preserving analytics. Since the notion of differential privacy [27, 29], a
plethora of systems have been proposed to provide differential privacy with cen-
tralized databases [46, 51, 47, 40]. In practice, however, such central trust can be
abused, leaked, or subpoenaed [23, 50, 42, 58].

To overcome the limitations of the centralized database schemes, recently a flurry
of systems have been proposed with a focus on preserving user privacy (mostly,
differential privacy) in a distributed setting where the private data is kept locally [37,
22, 49, 21, 45, 61, 38, 60, 28, 41, 5]. However, these systems are designed to deal
with the “one-shot” batch queries only, whereby the data is assumed to be static.

To overcome the limitations of the aforementioned systems, several differentially
private stream analytics systems have been proposed [30, 18, 17, 59, 56, 32, 39].
Unfortunately, these systems still contain several technical shortcomings that limit
their practicality. One of the first systems [30] updates the query result only if the
user’s private data changes significantly, and does not support stream analytics over
an unlimited time period. Subsequent systems [18, 39] remove the limit on the time
period, but introduce extra system overheads. Some systems [59, 56] leverage ex-
pensive secret sharing cryptographic operations to produce noisy aggregate query
results. These systems, however, cannot work at large scale under churn; moreover,
in these systems, even a single malicious user can substantially distort the aggre-
gate results without detection. Recently, some other privacy-preserving distributed
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stream monitoring systems have been proposed [32, 17]. However, they all require
some form of synchronization, and are tailored for heavy-hitter monitoring only.
Streaming data publishing systems like [63] use a stream-privacy metric at the cost
of relying on a trusted party to add noise. In contrast, PRIVAPPROX does not require
a trusted proxy or aggregator to add noise. Furthermore, PRIVAPPROX provides
stronger privacy properties (i.e., zero-knowledge privacy).
Sampling and randomized response. Sampling and randomized response, also
known as input perturbation techniques, are being studied in the context of privacy-
preserving analytics, albeit they are explored separately. For instance, the relation-
ship between sampling and privacy is being investigated to provide k-anonymity [19],
differential privacy [47], and crowd-blending privacy [34]. In contrast, this pa-
per shows that sampling combined with randomized response achieves the zero-
knowledge privacy, a privacy bound strictly stronger than the state-of-the-art differ-
ential privacy.
Approximate computation. Approximation techniques such as sampling [6, 33,
20], sketches [24], and online aggregation [43] have been well-studied over the
decades in the databases community. Recently, sampling-based systems [36, 4, 55,
54, 44] have also been shown effective for “Big Data” analytics. In particular, our
work builds on IncApprox [44], a data analytics system that combines incremental
computation [13, 10, 11, 12, 7] and approximate computation. However, PRIVAP-
PROX differs in two main aspects. First, the system performs sampling in a dis-
tributed way as opposed to sampling in a centralized dataset. Second, PRIVAPPROX
extends sampling with randomized response for privacy-preserving analytics.

5 Conclusion

This paper presents PRIVAPPROX, a privacy-preserving stream analytics system.
The approach in PRIVAPPROX builds on the observation that both computing
paradigms — privacy-preserving data analytics and approximate computation —
strive for approximation, and can be combined together to leverage the benefits of
both.
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