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Abstract

The slow progress in memory access latencies in com-

parison to CPU speeds has resulted in memory accesses

dominating code performance. While architectural enhance-

ments have benefited applications with data locality and

sequential access, random memory access still remains a

cause for concern. Several benchmarks have been proposed

to evaluate the random memory access performance on mul-

ticore architectures. However, the performance evaluation

models used by the existing benchmarks do not fully capture

the varying types of random access behaviour arising in

practical applications.

In this paper, we propose a new model for evaluating the

performance of random memory access that better captures

the random access behaviour demonstrated by applications

in practice. We use our model to evaluate the performance of

two popular multicore architectures, the Cell and the GPU.

We also suggest novel optimizations on these architectures

that significantly boost the performance for random accesses

in comparison to conventional architectures. Performance

improvements on these architectures typically come at the

cost of reduced productivity considering the extra program-

ming effort involved. To address this problem, we propose

libraries that incorporate these optimizations and provide

innovatively designed programming interfaces that can be

used by the applications to achieve good performance with-

out loss of productivity.

1. Introduction

Memory access latencies have been unable to keep up

with the fast pace at which CPU speeds have been in-

creasing. This growing disparity of speed between the CPU

and the memory has resulted in memory accesses dom-

inating code performance. Commonly referred to as the

“Memory Wall,” this has become a challenging problem in

the HPC domain. Several architectural enhancements such

as bigger caches, wider line sizes, complex pre-fetch and

cache replacement policies tend to improve the performance

of applications with data locality and sequential access.

However, these enhancements are of no use or may even

have a negative impact on the performance of applications

that access the memory in random fashion.

Applications with random access such as histogram up-

date, ray tracing, forward and backward projections in image

reconstruction may be categorized based on several factors:

– Operations performed on the random data: While ap-

plications such as histogram update and back-projection for

image reconstruction involve update of memory locations,

other applications such as ray-tracing and forward-projection

for image reconstruction involve only random reads.

– Random stream generation: In multi-core environments,

applications can also be categorized based on the way

the random stream of updates is generated. On the one

hand, in some applications such as ray tracing, forward and

backward projection for image reconstruction, the random

updates/addresses can be programmatically generated in

parallel; on the other hand, in applications such as histogram

update, the update stream is determined from some central-

ized I/O device or file system.

– Error tolerance: In some applications, for instance in his-

togram update of word counts in documents, it is not critical

for every update to be accurately accounted. However, in

other applications such as projections in medical imaging

reconstruction, errors may not be tolerable.

There are several benchmarks to evaluate random memory

access performance on multicore architectures, such as the

HPC Challenge RandomAccess benchmark [6]. However,

the performance evaluation models used by existing bench-

marks do not fully capture the varying characteristics of

random memory access applications as described in the

above categorizations. We propose a new model to evalu-

ate the performance of such applications that models the

characteristics of random memory access behavior arising

in practical applications.

We use our model to evaluate the performance of two

popular architectures, the Cell [5] and the GPU [9]. These

two architectures have contrasting approaches for dealing

with the “Memory Wall” issue. On the one hand, the Cell

processor features DMA based memory access coupled with

a user-managed local store that encourages overlapping of

memory accesses with computations thereby, hiding the

memory access latencies. The list-based DMAs in Cell allow
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for scatter/gather operations that are useful when accessing

memory randomly. On the other hand, GPUs feature an

architecture designed for parallel throughput. In this case, the

“average” memory access cost is reduced due to sheer par-

allelism using a large number of processing cores and low-

overhead scheduling of light-weight threads that amortizes

the memory access costs. We suggest novel optimizations for

improving the performance of random access applications on

both architectures and evaluate the improvement with these

optimizations using our proposed model.

While these architectures offer impressive performance,

this comes at the cost of reduced productivity. For obtaining

the desired performance, considerable effort is required in

programming and optimizing for these architectures. To

handle this, we propose libraries that incorporate these op-

timizations and provide innovatively designed programming

interfaces that can be used by the applications to derive

better performance without loss of productivity.

Our contributions are summarized as follows:

• Performance evaluation model. We propose a new model
to evaluate the performance of random access applications.

In this model, a large table resides in the system memory. A

stream of random numbers is generated. The stream may be

generated from a single processing unit (streaming mode) or

the stream may be divided into multiple sub-streams, each

generated on a separate processing unit (parallel mode).

For each random number that is generated, a table offset

is suitably extracted from the random number and the

corresponding entry is fetched from the table. Two different

kinds of operations may be applied to the entry. In the

read-only mode, an operation is performed on the entry

using the random number and accumulated into a running

variable. In the update mode, an operation is performed on

the entry using the random number and the resulting value

is then updated back in the table. This leads to four different

combinations – streaming read-only mode, streaming update

mode, parallel read-only mode and parallel update mode.

Moreover, depending on whether errors can be tolerated or

not, the parallel update mode and streaming update mode

may be divided into two more subcases - error-tolerant

and error-intolerant leading to 6 combinations in all. These
combinations are illustrated in Figure 1.

• Increased performance.We suggest novel optimizations to
improve the performance of random memory accesses on the

Cell and the GPU using the proposed model. For the Cell

processor, we propose a multi-buffering scheme (general-

ization of the double buffering technique) for error-tolerant

applications that groups the updates. For error-intolerant

applications, we propose a data partition based locking

scheme that does not exhibit too much loss of performance

in comparison to the error-tolerant case. For the GPU, we

study the performance of random accesses using NVIDIA

CUDA [9] and suggest techniques using which the threads

can co-operate to boost performance for large updates even
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Figure 1. Different modes of operation

though they are working on independent update streams.

This is achieved using the on-chip shared memory. Our

analysis of the performance on these specialized architec-

tures demonstrates that they offer considerable performance

boost in comparison to conventional architectures. We find

that while the GPU is more suitable when there are multiple

update streams being generated from different threads, the

Cell performs better when there is a single update stream

generated from the PPU.

• Increased productivity. We present innovatively designed
libraries that incorporate these optimizations and provide

generic interfaces that can be used across a large number

of applications thereby enhancing programmer productivity,

reducing software development effort and cost. Our libraries

are similar in spirit to the software cache library on the Cell.

However, while the software cache library is advantageous

for applications that exhibit locality of reference and/or data

reuse, our library is targeted at applications that exhibit

random memory access behavior.

Many applications exhibiting random memory access

behavior have been optimized on the Cell and GPU [3],

[11], [12]. However most of these optimizations are ap-

plication specific. Balart et al. [2] and Chen et al. [4]

propose runtime libraries combined with compile time code

transformations to optimize irregular memory accesses in

the applications. Our optimizations for the RandomAccess

benchmark achieve performance improvement of 66% in

comparison to that reported by Balart et al. [2].

The rest of this paper is organized as follows. Section 2

provides a brief overview of our model for measuring

random memory access performance based on the HPC

Challenge RandomAccess benchmark. Our optimizations for

the Cell and GPU architectures are described in Sections 3

and 4 respectively. In Section 5, we evaluate and analyze

the performance of our optimizations on these architectures.

Finally Section 6 concludes the paper.

2. Proposed performance evaluation model

As discussed in the previous section, existing benchmarks

for random memory access fall short of capturing the



characteristics of practical applications that display random

access behavior. In this section, we describe a new model for

studying random accesses to the system memory that fills

the gap by capturing the varying characteristics displayed by

random access applications in practice. Our model is adapted

from the HPC Challenge RandomAccess benchmark [6].

We briefly describe this benchmark and then present our

proposed extensions.

The HPC Challenge RandomAccess benchmark measures

the capability of the memory subsystem while performing

random updates to the system memory. It has received

considerable attention [7], [1], [10] and has been optimized

on many architectures. In the single node version of the

Randomaccess benchmark, there is a large table T of size
2k, called the update table, that occupies approximately
half the memory. The processor generates a pseudo-random

sequence of 64 bit integers. For each random number (say

ai), the least significant k bits are selected to index into the
table T . The selected entry in the table is updated using
a bit-wise xor with the random number ai. The stream of
random numbers is generated iteratively, with each random

number generated from the previous one, using the primitive

polynomial over the Galois Field of order 2 (GF(2)). The

number of such updates performed is four times the table

size. To capitalize on multi-threading and multicore features,

the benchmark allows for the pseudo-random sequence to be

generated and applied in parts (sub-streams), with different

threads/cores generating and applying the updates for the

different parts. The benchmark specifications allow for look-

ahead and storage of at most 1024 updates before they
are applied to the table. The performance of the system is

measured by the number of giga updates per second (GUPS)

performed by the system. The benchmark allows 1% errors

in updates. This allows for inconsistencies that may arise

when performing the updates non-atomically.

The shortcoming of the conventional random-access

benchmark is that it only supports the parallel update

mode with error tolerance. We extend the benchmark in

several ways to model the characteristics of random memory

accesses that arise in practical applications.

– Read-only mode. In this mode, the value from the table

entry is retrieved and XORed with the value of a running

variable. The table entry is not updated.

– Streaming mode. In this mode, the random updates are

generated on the processor/core that is capable of performing

I/O, file operations or interactions with other nodes in a

distributed memory system. The updates are then streamed

to different processors/cores to perform the update or accu-

mulate operations.

– Error Tolerance. For the error-intolerant mode, we modify

the verification process to check that there are no errors. The

existing verification process to check for at most 1% errors

is used for the error-tolerant mode.

– Varying sizes. We also vary the update sizes to study

the memory access performance for different lengths. The

update sizes are varied from 8 to 128 bytes in powers of 2.
In Sections 3 and 4, we discuss our optimizations for

random memory accesses under this new model on the Cell

and the GPU respectively.

3. Optimization of Random Access on Cell

The Cell processor combines a conventional high-power

PowerPC core (PPE) with eight simple SIMD cores, called

Synergistic Processing Elements (SPEs) in a heterogeneous

multi-core offering. It offers extremely high compute-power

on a single chip combined with a power-efficient software-

controlled memory hierarchy. Each SPE has 256KB of user-

managed Local Store (LS) for code and data. An SPE

explicitly issues Direct Memory Access (DMA) requests to

transfer data between the off-chip main memory and its local

store. Access to the external memory is handled via a 25.6

GB/s XDR (DDR2 for PowerXCell 8i) memory controller.

The PPE, eight SPEs, DRAM controller and I/O controllers

are connected via the high bandwidth Element Interconnect

Bus (EIB) [8].

We now discuss our design choices for optimizing random

memory accesses on the Cell.

3.1. Parallel mode

We design an optimized SPE library to support random

access updates targetted for applications that operate in

parallel mode wherein the SPEs generate the sequence of

addresses and update them. The library incorporates opti-

mizations to perform the updates efficiently. Our discussions

will first focus on the optimizations for the update mode with

error intolerance. We will then discuss the modifications for

handling read-only mode and error-tolerance.

The Optimized Library. In designing a random access

library that allows error-free updates, locking mechanisms

need to be used to synchronize across the SPEs. Locking is

very costly on the Cell processor as it is performed using

DMA operations in the main memory. Associating locks

with individual updates is very expensive as the locking

operations have to be performed for every udpate. Moreover,

this does not allow for grouping of updates and use of DMA

lists. On the other hand, associating a lock with the table

results in serialization effects across the SPEs as the lock

can only be with one SPE at a time. In order to address this,

we partition the update table into k partitions and associate
a lock with each partition. The partitions are determined

using the higher order bits of the table index. The SPEs

maintain update buffers (array of pending addresses and

values) of size m for each partition. The SPEs perform

DMA operations on the group of updates stored in the

update buffers (m updates at a time) using DMA lists. This
results in efficient bandwidth utilization as memory latencies



are amortized over more updates. The SPEs also employ

double-buffering to overlap the update computations with

the memory read/write (DMA) operations.

The most important method offered by the SPE library is

r update(u64Int addr, const void* uvalue) where addr is the

address of the table entry to be updated and uvalue points to

the value to be used for the update. This method is invoked

for every random access update that is to be performed.

The pseudocode for this method is shown in Algorithm 1.

Whenever the r update method is invoked, the update is

placed into one of the buffers based on the higher order

bits of the table index that determines the partition. When

some buffer becomes full (contains m pending updates),

the corresponding partition is locked and a DMA read

operation is initiated to get the coresponding values of the

table from the main memory into the local store. When the

DMA read completes, the updates are applied to the fetched

values and then a DMA write is initiated. Once the DMA

write completes, the lock is released on the partition. These

operations are performed asynchronously and the library

operates on the data for the partitions independently. It

keeps track of the DMAs that are in progress and does not

wait for the DMA to complete. Instead it returns back to

the SPE application. Note that the library does not ensure

that the update is completed on return. This allows library

flexibility to perform updates in batches and perform the

DMA operations efficiently. Moreover, the library requires

that this method be invoked frequently as the library may

be holding certain locks when control is returned to the

user. The library frequently checks for DMA completion

when the r update method is invoked. On completion of the

DMA operation for some partition, it proceeds to perform

the subsequent operation (performing updates and initiating

a DMA write in case a DMA read has completed or freeing

up the buffer in case a DMA write has completed). When

the application anticipates that it requires control for a long

period of time and will not be invoking the r update method

frequently or when all the updates have been performed, it

may invoke the r flush() method. This method is provided

to commit all the pending updates and release all the locks.

We use 2 buffers for every partition for double buffering.
The number of updates in each buffer is restricted to m such
that 2 ·m · k · P ≤ L where k is the number of partitions,
P is the number of SPEs and L is the look-ahead limit.
While adding updates to the buffers, a deduplication

process needs to be performed in order to collate updates

to the same memory location. It can be very expensive to

walk through the buffer list to search for duplicates. We use

a hashing based mechanism to reduce the comparisons to

be performed. We associate a bitmap of 256 bits with each

buffer. We hash an update address to a bit of the the bitmap

(simply by looking at 8 lower order bits). Before dispatching

a DMA read for a buffer, we scan the list of updates in the

buffer and update the corresponding bit in the bitmap. Before

doing so, we check if the bit is already set. If so, there may

be a duplicate for this update and we need to scan against the

other updates in the buffer. If not, we avoid any scanning.

With the number of updates per buffer being much smaller

than 256, we avoid substantial number of comparisons. The

Algorithm 1 includes this deduplication process.

For the error-tolerant case, the library simply disables the

locking mechanism. However, updates are still separated into

different buffers based on the address bits. This allows the

SPE to work on more independent streams of updates in a

multi-threaded manner. This approach is similar to Software-

Hyperthreading mentioned in [3]. The read-only mode is

also handled similarly. We omit the interface details due to

space limitations.

The Optimized Benchmark. We now discuss how the

benchmark is optimized using the optimized library for

random access described above. Recall that in the parallel

mode, the random sequence generation is distributed across

the SPEs. The PPE acts as the master – it initializes the

Update Table and distributes the RandomAccess workload

to the SPEs, which act as workers. The work partitioning

is done by dividing the stream of updates to be performed

into substreams, as many as the number of SPEs and each

SPE generates the pseudorandom subsequence for its own

substream. The SPE thereafter use the optimized SPE library

to perform the actual updates on its substream. These steps

are shown in Algorithm 2.

3.2. Streaming mode

In the streaming mode, the PPE generates the updates and

passes them to the SPEs for applying them to the table.

The Optimized Library. For this case, we design a PPE

based library. The library internally uses the SPEs in order

to optimize the random accesses to the memory. It does this

by creating buffers containing groups of updates for each

SPE to process. The PPE maintains w buffers for each of
the P SPEs. Each of these buffers can store m updates. On
invokation of the r update method on the PPE, the library

fills up buffers for the SPEs. When any of the buffer fills

up, it sends a mailbox message to the corresponding SPE.

An SPE on receiving a mailbox message, initiates a DMA

get to retrieve the updates from the corresponding buffer.

On completion of the DMA get, they send back a mailbox

message to the PPE so that it can fill in more updates in

the corresponding buffer in the main memory. Once the

SPE completes the DMA to fetch the buffer contents, it can

process it as in the case of parallel mode by reusing the SPE

library routines discussed in Section 3.1. The total number

of updates in the buffers is m · w · P . As there can be an
equal number of updates pending with the SPEs at any time,

we ensure that 2 ·m ·w ·P ≤ L to adhere to the look-ahead
limit.



Algorithm 1: SPE update routine r update

r update(u64Int addr, const void* uvalue)

//fill buffer - Index of first buffer of the partition that is
currently being filled
//dma buffer - Index of second buffer of the partition that
is being used for DMA

Determine the partition of the table, ipartition, this addr
belongs to
// Check if this addr is already present in the dma list
Hash the addr to bit b in the bitmap
if bit b is not set then
Set bit b in the bitmap
Add the addr to the dma list for fill buffer of
ipartition and also copy the update value, uvalue, to
the SPE LS buffer

else
Scan through the current set of addresses in the dma
list to see if we already have addr
if duplicate address found in the dma list then
Update (e.g. XOR) the existing uvalue in the
dma list with incoming uvalue

else
Add the addr to the dma list for fill buffer of
ipartition and also copy the update value,
uvalue, to the SPE LS buffer

end
end

if fill buffer got full then
if dma buffer is free (no DMA/compute in progress)
then
Mark the fill buffer to be used for DMA read
and swap the fill and dma buffers

else
Set the waitflag to wait until dma buffer gets free

end
end

if dma buffer marked for DMA read then
Lock the ipartition and initiate the DMA read
request for dma buffer

end

/* Frequently check status of in-progress DMA/compute
operations for each partition and proceed to the next set
of operation for the corresponding partition */
if DMA read is complete then
update the fetched value and start the DMA write

else if DMA write is complete then
mark the dma buffer as free
unlock the ipartition

end

Note that streaming mode involves additional DMAs

from the SPEs to fetch the buffer of updates which it

was generating earlier. However, this does not impact the

performance much as these are large contiguous buffers and

can be fetched efficiently.

4. Optimization of Random Access on GPU

GPUs are highly parallel, multi-threaded, many-core co-

processors to the CPU. A GPU can be modeled as a set

Algorithm 2: Optimizing Benchmark on Cell in

parallel update mode

Get the number of updates to be performed per SPE
while SPE has updates for the table do
Generate the next pseudorandom number in the
sequence
Compute the address, addr, of the table entry to be
updated using the random number
Compute the update value, uvalue, for updating the
table entry
Call r update(addr, uvalue) for performing update

end
Call r flush to commit all pending updates and release
locks

of SIMD multiprocessors (SMs) each consisting of a set of

scalar processor cores (SPs). The SPs of a multiprocessor

execute the same instruction simultaneously but on different

data. The GPU has a large high bandwidth device memory

with high latency. Each SM also contains a very fast, low-

latency on-chip shared memory shared among its SPs. The

CUDA programming model[9] is amongst the most popular

programming models on the GPU. In this programming

model, a host program runs on the CPU and launches a

kernel program to be executed on the GPU device in parallel.

The kernel executes as a grid of one or more thread blocks,

each of which is dynamically scheduled to be executed on a

single SM. Each thread block consists of a group of threads

that cooperate with each other by synchronizing their execu-

tion and efficiently sharing resources on the multiprocessor

such as shared memory and registers. Threads within a

thread block get executed on a multiprocessor in scheduling

units of 32 threads called a warp. A half-warp is either the

first or second half of a warp.

We now discuss out design considerations for optimizing

random memory accesses on the GPUs.

4.1. Parallel mode

In the parallel mode, the random sequence generation is

distributed amongst the threads. We start with a discussion of

a basic implementation of the benchmark using the GPU. We

then discuss our optimizations and libraries incorporating

these optimizations.

Basic Implementation. The basic implementation is driven

by the host CPU. It allocates and initializes the update

table in the GPU global memory. Accesses to the table are

performed by multiple threads that are created on the GPU

by launching a randomaccess kernel. The update stream

is divided into substreams, as many as the number of

threads. Each thread is responsible for handling one of these

substreams. For each generated update, a thread performs

read or read-modify-write operation on the corresponding

update table entry depending on the mode of operation. For



update sizes larger than 16 bytes, the threads update the table

entry iteratively, working on 16 bytes in each iteration.

The Optimized Library. We now discuss the optimizations

incorporated in our library:

(1) Memory Coalescing. Our library enables large contigu-

ous memory read and write operations to be performed

collectively by the threads of a half-warp. It is based on a

hardware feature provided by the GPUs for higher memory

throughput, known as memory coalescing. For instance,

when threads of a half-warp (group of 16 threads) access

consecutive words of an aligned segment in global memory,

the GPU hardware is able to coalesce these accesses into

a single memory transaction, improving memory bandwidth

utilization. The main idea in our library design is for the

threads of a half-warp to collaborate and utilize the memory

coalescing feature when all of them have to perform large

memory accesses. This is feasible since threads in a warp

(or half-warp) execute the same stream of instructions.

The library provides an interface for a GPU thread to read

128 bytes of data from a global memory location and place
it into the low latency on-chip shared memory available on

the GPU multiprocessor. The method load128(void* shmem,

void* glmem, void** saddr) reads 128 contiguous bytes from
the global memory region pointed to by glmem and writes

it to the shared memory buffer pointed to by shmem at

an offset of htid × 128 bytes, where htid is the index (0-
15) of the caller thread within its half-warp. This method

is a collective operation and is required to be called by

all the threads of the half-warp together. To perform this

read efficiently, the threads of a half-warp first save their

global memory addresses pointed to by glmem to saddr

in the shared memory. Then all the 16 threads of a half-
warp work on these addresses, one at a time. They work

iteratively on these addresses, collectively reading 128 bytes
from one of the global memory address stored in saddr to

shared memory buffer shmem in each iteration. There are

16 such iterations for a half-warp. While reading each 128
byte value, the 16 threads of a half-warp read consecutive
8 bytes of the value. The benefits of memory coalescing
are observed as the threads of a half-warp read consecutive

parts of the same 128 byte entry at the same time. This is
illustrated in Figure 2(a).

A similar method store128(void* shmem, void* glmem,

void** saddr) is provided for performing large memory

writes collectively. This method reads 128 bytes from the
shared memory and writes to the global memory in a

similar manner to load128 described above. The library

also provides similar interfaces load64 and store64 for 64
bytes. In this case, the 16 threads of a half-warp read/write
consecutive 4 bytes of a 64-byte value in the memory.
(2) Reducing Bank Conflicts. The on-chip shared memory

on a multiprocessor is banked for achieving high memory

bandwidth. Therefore its effective bandwidth is inversely

proportional to the number of bank conflicts between the

shared memory accesses by threads of a half-warp. When

using the shared memory approach described above, each

thread of a half-warp on returning from the load method

would perform some operations (read, modify, write) on

its 128-byte value fetched into the shared memory buffer.
However this causes 16-way bank conflict as each thread
of a half-warp accesses the same bank resulting in reduced

effective bandwidth. To reduce conflicts, we add an extra 8-
byte element per 128-byte (or 64-byte) update size in shared
memory buffer. A thread with index tid now updates its 128-
byte value stored at an initial offset of tid× (128+8) bytes
instead of tid× 128 bytes, thereby reducing bank conflicts.
This general purpose library is also useful in many other

applications that require access to large contiguous memory.

The Optimized Benchmark. The optimized benchmark

uses the library described above to perform large updates

efficiently. The threads in a half-warp co-ordinate to collec-

tively perform the updates that they generate. Each thread

works on its own substream. Thus the update stream is

divided into as many substreams as the number of threads.

The threads perform the updates in three steps iteratively.

In the first step, each thread within a half-warp generates

a random number in its own substream and invokes the

optimized library method load128 to collectively read the

updates into shared memory. In the second step as illustrated

in Figure 2(b), each thread of a half-warp reads its 128-byte
value fetched into the shared memory and updates (XORs) it

with a generated 128-byte value. In the third step, the threads
of a half-warp store the updated 128-byte values using the
store128 methods collectively, similar to how they read the

values. In the read-only mode, the value is accumulated in

the second step and the third step is not performed.

Note that, there are multiple half-warps that are operating

in parallel. Therefore the shared memory requirement is

proportional to the number of threads in a thread-block.

4.2. Streaming mode

In the streaming mode, the host generates the updates and

streams them to the GPU for updating the entries in the

update table. The host maintains a buffer, h AddrBuf, of

size BSize to cater to streaming of the updates to the GPU.
It alternately fills up the two halves of the buffer, each of

size BSize/2. While one of the halves is being processed
by the GPU, the other half gets filled with updates by the

host. Therefore, the host first generates BSize/2 updates to
fill one half of the buffer, and then transfers the generated

half to the GPU and invokes the stream randomaccess kernel

to perform updates to the update table stored in the device

global memory using the optimized library as above. The

kernel call is asynchronous and doesn’t block the host. The

host simultaneously generates the next set of updates, filling

the other half of h AddrBuf. Therefore, kernel execution on

the GPU is overlapped with update generation on the host.
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Figure 2. Memory loads and updates using shared memory on GPU

This update scheme ensures there are no more than BSize
updates pending at anytime. We set BSize ≤ L, where L
is the look-ahead limit.

The error-intolerant mode can be handled on modern

GPUs by using CUDA atomic functions to implement locks.

However, this is not a recommended approach on the GPU

as it introduces dependencies amongst the CUDA threads.

5. Performance Results and Analysis

In this section, we present experimental results to evaluate

the performance of the proposed optimizations for random

memory accesses in parallel and streaming modes on the

Cell processor and GPU.

Experimental Setup. A summary of specifications of eval-

uated Cell and GPU systems is shown in Table 1. The

Quadro FX 4600 GPU consists of 96 processor cores (SPs).

It is organized as set of 12 SMs each consisting of 8

SPs running at 1.19 GHz. It has 768 MB of off-chip

device memory providing a peak memory bandwidth of 67.2

GB/s. Each SM has 8192 registers and 16KB of local on-

chip shared memory, shared between its scalar cores. QS22

IBM BladeCenter consists of two PowerXCell 8i processors

running at 3.2 GHz connected in a NUMA configuration.

The BladeCenter consists of 4GB DRAM per processor with

a total of 8GB main memory. We also used an Intel Xeon

processor based system. The system consisted of two dual-

core Xeon 5148 processors with a total of 4 cores running

at 2.33 GHz. It has 4 GB of main memory. The GCC 3.2.3

compiler (with -O3) was used to compile the source code.

5.1. Discussion and Analysis

Table 2 summarizes different optimizations performed for

the GPU along with the optimization parameters. We use

the same naming convention for the optimizations when

discussing performance results.

The RandomAccess benchmark measures the performance

in units of GUPS (Giga-updates per second). As we vary the

update size as well, we use a slightly different unit, Giga-

bytes updated per second (GBUPS), to measure the random
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Table 2. Optimization versions for GPU

access performance. This is defined as GUPS× update-size
and therefore measures the total number of bytes updated per

second in update mode and total number of bytes read per

second in read-only mode.

Error-tolerant update mode. This section discusses the

performance obtained for the error-tolerant update mode.

Figure 3. Partitioning approach for Cell (error tolerant

parallel update mode)

• Scaling: Figure 3 shows the performance on Cell for
varying number of SPEs and partitions with an update size

of 8-bytes. For 8 or fewer SPEs, a single Cell chip of the
BladeCenter is used. For more SPEs, we use two approaches

of memory allocation - 16M represents the case when entire
table is allocated from a single memory node. For 16D the
table allocation is interleaved across the two memory nodes.

We observe that for a fixed number of partitions, the
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QS22 PowerXCell multicore 3.2 2 8(+1) 51.2 8 256 Cell ppu/spu-
8i BladeCenter SIMD 25.6/socket GB SDK 3.1 gcc 4.1.1

Quadro multithread 1.19 1 96 67.2 (device) 768 16 CUDA nvcc
FX 4600 SIMD(SIMT) (12x8) 4 (PCIe x16) MB per SM 2.1 0.2.1221

Table 1. Specification of evaluated systems

performance scales almost linearly with increasing number

of SPEs upto 8 SPEs. Performance improves only marginally
beyond 8 SPEs, scaling better for the 16D case. This is
expected as the memory contention becomes high and dis-

tributing the table across the nodes results in load-balancing

of the requests.

Figure 3 also shows the performance variation with dif-

ferent number of partitions with 8-byte updates. Perfor-

mance improves with increasing the number of partitions

(independent buffers) and nearly peaks when using 4 par-

titions. Thereafter, the gains are very small. For 8 SPEs,

performance with 4 partitions is 52% better compared to 1

partition.

These results highlight that for memory intensive appli-

cations, working with multiple buffers independently (in a

multi-threading fashion) can significantly improve perfor-

mance compared to the traditional double buffering approach

where operations on the buffers are tightly coupled.

Figure 4. GPU performance scaling for basic implemen-

tation (parallel update mode)

Figure 4 shows scaling of basic GPU implementation

(GPU-RA-BA) performance with 8-byte update size for

different number of CUDA threads and thread blocks. We

observe that performance peaks when the total number of

threads ranges between 256 to 512. Each thread-block gets

scheduled on one multiprocessor comprised of 8 processing

cores on the GPU. With 64 threads, the best performance

is observed with 4 thread-blocks. This only utilizes 32 pro-

cessing cores – about one third of the available processing

cores. No performance gains are observed by increasing the

number of thread-blocks (trying to utilize more processing

cores). This is expected as more threads lead to high memory

contention due to an increased number of requests.

Figure 5. Cell and GPU performance with different
update sizes for error tolerant update mode

• Varying Update Size: Figure 5 shows the performance
with varying update sizes for traditional Intel Xeon processor

using 4 cores, Cell and GPU. The Intel Xeon performance

is taken with 4 threads (1 thread/core). Each core generates

its own substream for performing updates. The Xeon per-

formance is much lower than Cell and GPU performance

especially with large update sizes.

For Cell, the parallel update mode performance scales

well with increasing update sizes on both 8 SPEs (Cell) as

well as 16 SPEs with interleaved data (Cell(Blade)). The

best performance is observed for 128-byte updates, showing

an increase of close to 16x over the performance for 8-

byte updates. This is because 128 byte updates involve full

cacheline transfers between main memory and local store

while the number of memory requests remains the same.

Smaller updates only transfer a partial cacheline but still

consume 128 bytes (cacheline size) worth of bandwidth.

For the basic implementation on the GPU (GPU-RA-

BA) with 8-byte updates, performance does not scale well

with increasing update sizes. The performance with 128-

byte updates is limited to about 5.6 times better than the
performance for 8-bytes. This is primarily because memory

requests larger than 16 bytes are serviced iteratively. For



64 and 128-byte updates, performance can be improved by
using memory coalescing effectively. This is discussed later.

The results for streaming update mode (Cell-SRA and

GPU-SRA-BA) are also shown in Figure 5. As can be seen,

the Cell performance (Cell-SRA) achieves similar perfor-

mance as parallel mode (Cell) and is largely unaffected

in the distributed-memory setting. The performance for the

GPU (GPU-SRA-BA) on the other hand is much lower than

the parallel mode (GPU-RA-BA) performance. This can be

attributed to the host buffer size (Bsize) being restricted to

1024 (see Section 4.2 ) in order to adhere to the benchmark

limit. By relaxing this constraint and increasing the buffering

to 1M (220) updates, the performance improved to within
80% of the performance in parallel mode. This is because

the host sends large number (0.5M) of updates in each

iteration to the GPU increasing the data transfer rate and the

kernel works on larger number of updates in every iteration.

Operation Update Mode Read-Only Mode

Update Size 64 bytes 128 bytes 64 bytes 128 bytes

GPU-RA-BA 2.567 3.146 3.448 4.612
GPU-RA-SM 3.199 4.651 4.854 5.161
GPU-RA-SMB 4.182 7.507 4.87 8.978

Table 3. GPU Performance (in GBUPS)

• Memory Coalescing: The performance results for 64 and
128 byte updates with memory coalescing using shared

memory are shown in Table 3 for different optimization

strategies. Memory coalescing using shared memory (GPU-

RA-SM) leads to a factor 1.5 improvement in performance

over the basic version (GPU-RA-BA) for 128-byte update

size. However, with the optimizations related to avoiding

bank conflict in shared memory (GPU-RA-SMB), perfor-

mance further improves by about 61% over GPU-RA-SM.

This results in an overall factor of 2.4 improvement with

GPU-RA-SMB over GPU-RA-BA. Usage of shared memory

for this optimization limits the number of threads per thread

block that can be used on the GPU. This suggests that having

larger shared memory on the GPUs will be beneficial.

Figure 6. Productivity (error-tolerant update mode)

• Productivity: Figure 6 measures the productivity for dif-
ferent optimizations on the Xeon, Cell and GPU. It plots

lines of code and corresponding performance for various

optimizations for 128-byte updates in update mode. We note

that the Cell and GPU significantly boost the performance

for random accesses in comparison to conventional archi-

tectures, such as Xeon. However the improved performance

comes at the cost of reduced productivity due to extra

programming effort involved. The GPU shows the best

performance/lines of code ratio. It requires considerably less

programming effort compared to the Cell. The Cell performs

better than GPU for the streaming mode (Cell-SRA and

GPU-SRA-BA) with small look-ahead limit but also requires

more programming effort.

To study the productivity gains when using our libraries,

we compared the library version with the non-library version

of our implementation. GPU-RA-SMB(lib) and GPU-RA-

SMB show the performance with and without using the

library on GPU for large update sizes (section 4.1) respec-

tively. Similarly, Cell-Blade and Cell-Blade (lib) show the

parallel update mode performance with and without using

the library on Cell (section 3.1). This demonstrates that our

libraries significantly improve programmer productivity.

Read-Only Mode. The GPU performance scaling with read-

only mode shows similar trends as with the update mode

shown in Figure 4. The performance peaks when the total

number of threads goes above 256 and the best performance

is achieved with 4 thread-blocks each containing 64 threads.

Using multiple partitions on the Cell improves perfor-

mance in read-only mode as well but the gain is less than

what was obtained in update mode. For 8 SPEs, performance

with 4 partitions is 39% better in comparison to 1 partition.

Figure 7. Cell and GPU performance with different

update sizes for read-only mode

Figure 7 shows the Cell, GPU and Xeon performance with

varying update sizes for read-only mode. The performance

numbers are better in this case compared to update mode as

expected and show similar trends.



Table 3 also shows performance numbers for read-only

mode. GPU-RA-SMB leads to almost ×2 improvement over
GPU-RA-BA for 128-bytes.

Figure 8. Cell performance with error tolerant and

intolerant modes (parallel update mode)

Error-intolerant update mode. Figure 8 compares the

performance of error-tolerant (ETOL) and error-intolerant

(EINTOL) update modes for varying update sizes on 8 SPEs

(Cell) as well as 16 SPEs with interleaved data (Cell(Blade)).

For EINTOL, the partition based approach (section 3.1)

benefits with increasing number of partitions and updates

per partition buffer. Therefore, for comparing performance,

we relaxed the look-ahead limit to 32K allowing for more

partitions and updates per buffer. The EINTOL performance

is more than 76% of the ETOL performance up to update

sizes of 64 bytes, showing effectiveness of the optimizations

incorporated in the optimized SPE library. The performance

with 128 update size is lower as SPE Local Store size limits

the number of partitions and updates per buffer.

6. Conclusion

We proposed a new model for evaluating the performance

of random memory accesses as exhibited by applications in

practice. Our model better captures the varying characteris-

tics of random access behavior in practical applications when

compared to traditional benchmarks. This is demonstrated

by the fact that the performance results show significant

variation in different modes, such as parallel update and

streaming update modes.

We used our model to evaluate the random access perfor-

mance on Cell and GPU. Our optimized numbers on GPU

are better by a factor of 2.4 over the base version for 128-

byte updates in parallel error-tolerant update mode. The

Cell performance in streaming mode is similar to the parallel

mode, however, the GPU performance in streaming mode is

much lower compared to parallel mode when host stream

buffer size is small. We conclude that the GPU is more

suitable when multiple update streams are being generated

from different cores. However, in the case where the update

stream is generated from a single host/processor, the Cell

performs better when the buffer size is small.

We also showed that the Cell and GPU significantly boost

the performance of random memory accesses in comparison

to conventional architectures. However this performance

improvement comes at the cost of reduced productivity due

to the extra programming effort involved. We showed that by

providing carefully designed optimized libraries, this effort

can be reduced without compromising performance.
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