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ABSTRACT

Although new thread placement approaches for asymmetric NUMA
systems have recently emerged, it is perhaps surprising to observe
that the standard techniques for page placement still rely on the ob-
solete assumption of a symmetric architecture. This paper proposes
a novel approach, called Asymmetry-Aware Page Placement (AAPP),
for near-optimal placement of shared pages in asymmetric NUMA
systems. Given a memory-intensive application clustered on a set
of nodes, AAPP builds an approximated model of the potential
throughput of the application and calculates a target near-optimal
weight distribution to be adopted when interleaving shared pages.
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1 INTRODUCTION

Non-uniform memory access NUMA) architectures have quickly
become the norm in high-end servers. In a NUMA system, CPUs
and memory are organized as a set of interconnected nodes, where
each node typically comprises one or more multicore CPUs and a
memory controller that provides access to a partition of the global
physical address space. The non-uniform memory access nature
stems from this organization — the latency of data access depends
on which node the accessing thread runs and which node the target
physical page resides on.

When compared to symmetric multiprocessing (SMP) architec-
tures, the multi-node nature of NUMA architectures poses two new
fundamental questions: where should the threads and the pages
of each application be placed. Due to the underlying overheads
and capacity limits, sub-optimal decisions to these questions can
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easily lead to huge impacts on the global throughput of applications,
especially when these are strongly memory-intensive [6].

However, finding a proper page and thread placements in NUMA
systems is far from trivial. On one hand, it depends on the com-
plex and dynamic application-specific performance patterns. On
the other hand, it needs to take into account increasingly intricate
and asymmetric NUMA topologies. In fact, contemporary NUMA
architectures are characterized eminently asymmetric since differ-
ent pairs of nodes are interconnected at distinct bandwidths and
latencies (not all nodes are connected by a single hop). To further
exacerbate this asymmetry, the effective memory bandwidth at
which a given page is accessible to some thread (either local or re-
mote) varies significantly depending on the contention from other
nodes trying to access pages on the same memory controller.

As some recent studies have shown [13, 17], the above sources
of asymmetry render traditional placement schemes (originally
designed under the symmetry assumption) inappropriate for the
emerging NUMA architectures. Hence, the state-of-the-art needs to
be deeply rethought to embrace the emerging asymmetry. The
research community has recently started to respond to such a
quest, proposing new thread placement approaches for asymmetric
NUMA topologies [13, 17].

However, it is perhaps surprising to observe that the standard
techniques for page placement still rely on the obsolete assumption
of a symmetric architecture. With some variations, the general rule
of thumb is that shared pages (i.e., pages that are accessed by all
threads) should be interleaved across a set of nodes. To the best
of our knowledge, most schemes restrict such set of nodes to the
nodes where the threads of the application are clustered [6, 10, 13].
Our proposal, AAPP stretch out to a larger set of nodes that also
includes CPU-idle nodes.

One key similarity that all these schemes share is that all in-
terleave pages uniformly across nodes where the threads of the
application are clustered. However, since the topology interconnect-
ing such nodes is often asymmetric, the resulting performance is
sub-optimal. As an example, consider the memory-intensive multi-
threaded application Streamcluster from PARSEC [2] running on
4 nodes of a larger asymmetrical NUMA machine. As Figure 1 de-
picts, uniformly interleaving this application’s pages across these
nodes (Worker-Only Uniform Interleave (WOUI)) will yield a lower
throughput than uniformly interleaving in a larger set of nodes
(AAPP-Uniform). However, both approaches are clearly sub-optimal
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Figure 1: Performance of Streamcluster with 24 threads on 4
nodes under WOUI policy, AAPP-Uniform policy (best pol-
icy for this benchmark) and Default (First-Touch) policy on
our experimental system

as they build on the false promise of a symmetric topology. Intu-
itively, it should follow a weighted interleaving policy where better
connected nodes are favoured (with a higher portion of pages) than
poorly connected ones.

Still, as we explain later in the paper, determining the optimal
weight distribution is challenging for a number of reasons:

e First, many parallel applications have a large thread count, so
their threads are clustered across multiple nodes. Optimizing
a weighted page interleaving in such multi-node applications
is not trivial, as the optimal weighted page interleaving will
be different if considered from the perspective of threads
in distinct nodes. Hence, the optimal weight distribution is
usually determined as a compromise solution that, despite
being sub-optimal from each node’s perspective, is system-
wide optimal.

e Second, if the interconnect topology is static, the effective
interconnect capacities are transformed by the simple fact
that a subset of a machine’s nodes will be running application
threads (while the remaining nodes may have their CPUs
idle). In fact, the bandwidth that a given node offers to remote
threads (accessing the node’s pages) is lower when that node
is hosting local threads, when compared to a node whose
CPUs are idle.

e Finally, even when the capacity of each interconnect link
and memory controller are well-known a priori, their pre-
cise behavior is hard to predict in practical situations where
multiple threads contend for such resources [17, 18]. This
includes contention across local (and remote) threads when
accessing data on the same memory controller [18], across
local threads when competing for the same interconnect
link [13], as well as inter-node cache-coherency invalidation
overheads [4]. High-precision models of such complex inter-
ferences are not usually available, hence simpler heuristic
approximations are the only option.

This paper focuses on the problem of determining optimal weighted
page interleaving in contemporary NUMA systems. To the best of
our knowledge, this paper is the first one to address this problem.

The paper proposes a novel approach, called Asymmetry-Aware
Page Placement (AAPP), for near-optimal placement of shared
pages in asymmetric NUMA systems. Given a memory-intensive
application clustered on a set of nodes, AAPP builds an approxi-
mated model of the potential throughput of the application and
calculates a target near-optimal weight distribution to be adopted
when interleaving shared pages. AAPP is fully implemented as a
variant of mmap and malloc, and thus can be used transparently by
any application, with no changes to the OS kernel.

An experimental evaluation with a representative set of memory-
intensive workloads from PARSEC [2] shows that AAPP is able to
achieve up to 1.4x speedups when compared to traditional uniform
page placement policies for NUMA systems.

2 AAPP

This section describes AAPP. We start by introducing the system
model assumptions, then present the AAPP model. Finally, we
describe how the near-optimal weighted interleave configurations
that AAPP recommends are enforced on the effective page to node
mappings.

2.1 System Model

We assume a NUMA system comprising a set of N nodes, ng, ny, ..., nN—1.

Each node contains one or more multicore CPUs, which together
are able to run up to T hardware threads. Furthermore, each node
includes a memory controller, which maintains a partition of phys-
ical pages that constitute the global physical address space of the
system. We assume that the nodes of the system are locally ho-
mogeneous; i.e., their CPU and memory controller have similar
characteristics.

Any thread (running at any node) may read and write to pages
that reside on the local node’s memory, and on any remote node’s
memory. In the latter case, the read/write request is sent through
the interconnect, which provides full connectivity among all nodes.

In contrast to the node homogeneity, the interconnect topology
is asymmetric. More precisely, a thread running on a given node will
observe different bandwidths and latencies when reading from or
writing to the memory at different nodes. The most obvious differ-
ence is between local and remote accesses. Among remote accesses,
the differences in bandwidth are explained by the heterogeneity
among interconnect links, which can even have distinct bandwidths
at each communication direction. The latency of remote accesses
can also change since some nodes are directly connected, while
others communicate through multiple-hop paths.

2.2 Algorithm

The goal of AAPP is to find a near-optimal page placement for
multi-threaded applications on the NUMA system described above.
We consider that the application has ¢ threads and all run a ho-
mogeneous workload; i.e., the memory access patterns are similar
among all the threads of the application.

Within the application’s address space, we distinguish between
thread-private pages and shared pages. Thread-private pages are
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trivially placed on the same node as the corresponding threads.
Shared pages, in contrast, are harder to place optimally, as they are
accessed by threads residing on different nodes, through diverse
interconnect links. Hence, the focus of AAPP is on finding the
optimal placement for the shared pages.

AAPP follows a 4-stage approach as depicted in Figure 2. Firstly,
the thread placement stage resorts to some state-of-the-art thread
placement scheme to decide at which worker nodes threads should
run. Secondly, the capacity estimation stage decides the subset of
nodes where pages should be placed and estimates node-to-worker
capacities for such a subset. Thirdly, the weight decision stage uses
the information obtained previously to compute optimal interleav-
ing weights for each node where pages are to be placed. Finally, the
placement stage place pages according to the previous recommen-
dation. We now describe each component.

2.2.1 Thread placement stage. We rely on some state-of-the-art
thread placement tool (like [13, 17]) to decide the thread-to-node
mapping. As a result, we expect that the ¢ threads of the application
are evenly balanced across a subset of well-connected nodes (mainly
inter-connected by direct and high-bandwidth links). We designate
these nodes as worker nodes. In general, any thread placement
algorithm deemed suitable can be plugged into the AAPP.

2.2.2  Capacity estimation stage. The first goal of this stage is to
determine the subset of nodes where pages should be placed. The
common best practice is to interleave the shared pages on the nodes
which have threads running. We call this Worker-Only Interleaving
(WOI). This policy is employed in most state-of-the-art placement
solutions for NUMA systems, such as [6, 10, 13]. WOI follows the
intuitive heuristic that, by placing shared pages in worker nodes,
we ensure that at least some threads will access each shared page
locally; since the worker nodes will typically be mutually well-
connected, the toll paid by remote threads will be also attenuated.
The remaining (non-worker) nodes are simply not chosen to hold
pages because any page placed would be remote to every thread.

While counter-intuitive, it is easy to show that, when applica-
tions are sufficiently memory intensive, placing shared pages on
both the non-worker and worker nodes unlike WOI can lead to
significant performance benefits. We call this Global Interleaving
(GI). The reason for the advantage of GI is that, as studied by re-
cent works [13, 17], interconnect congestion becomes the decisive
performance factor. In fact, for some applications, congestion itself
has a higher impact in performance than access latency [13]. In
other words, wisely balancing pages among NUMA nodes in or-
der to maximize the available memory bandwidth becomes more
important than co-locating shared pages and worker nodes.

Therefore, the first decision that AAPP takes is whether WOI
or GI should be chosen for the given application. To take this de-
cision, AAPP profiles the application under both options (WOI
and GI) for a fixed profiling time, using a uniform interleave page

placement. Based on the observed performance, AAPP selects the
best-performing policy, WOI or GI. In each profiling window, AAPP
measures the memory capacity (i.e., access bandwidth) from each
node holding pages to each worker node. More precisely, given a
worker node W, we determine the capacity (bytes per second) when
reading from pages in a target node M. We refer to this capacity
as the Capacity from node M to node W i.e. Capacity(W « M).
This is achieved by hardware performance counters. The resulting
map of node-to-worker capacities will be the main input to the next
stage.

2.2.3  Weight decision stage. We consider a simple example in-
spired from the example discussed in [19] with a memory-intensive
multi-threaded application whose execution time is mainly deter-
mined by the time to transfer a given dataset (S) from the memory
subsystem to the CPUs.

Let’s first consider the set of threads running on a given worker
node, Ny. Threads at Ny need to read S bytes from shared pages that
are interleaved at a set of N nodes (selected in the previous stage) in
aweighted (i.e., non-uniform) fashion, where the portion (weight) of
pages at a given node i is given by w;. Naturally, >;_¢ ny_; wi = L.

Hence, the time spent for the worker threads in Ny to read the
fraction of S placed in node i is approximated by Equation 1:

TimeToReadFrom(N;) = (S = w;)/Capacity(Ny < N;) (1)

If we now take into account that the worker threads in Ny are
actually reading from pages in different nodes, concurrently, the
time that we need to wait until all bytes in S are completed can be
approximated by a parallel race between the read access batches
from each node, as denoted by equation 2. A corollary of this is
that the total execution time of threads at Ny is determined by the
batch of reads from a given node that takes the longest time.

TotalTime = max;(TimeToReadFrom(Ny < i)) (2)

Our goal is now to find weights that minimize the TotalTime. It
is easy to show that the solution to this optimization problem is
given by Equation 3.

w; = Capacity(Ny < N;)/sumy(Capacity(No < Ni)) (3)

Finally, the previous optimization can be generalized to multiple
worker nodes using Equation 4.

w; = MinCapacity(i)/sumy(Capacity(Ny < Ni)) (4)

where MinCapacity(i) denotes the lowest capacity from node
i to any worker node. For space limitations, we omit the proof of
Equation 4.

2.2.4  Placement stage. After devising a target weight distribu-
tion, AAPP simply needs to ensure that the application’s shared
pages are mapped to nodes according to that distribution. To achieve
this, AAPP currently employs a portable memory allocation library
(with an API similar to the ptmalloc library [7]) that allows the
programmer to allocate memory in pages that are interleaved ac-
cording to a user-defined weight distribution.

3 PRELIMINARY EVALUATION

Our goal is to evaluate how much performance advantage AAPP
introduces when compared to the usual page placement policy,
namely Worker-Only Uniform Interleave (WOUI). In WOUI, memory
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pages are spread evenly across the chosen subset of worker nodes.
This is the most widely used policy to mitigate congestion.

We also compare WOUI with a simplified variant of AAPP, de-
noted AAPP-Uniform, where we disabled the weight decision stage.
Thus, AAPP-Uniform after opting between WOI and GI, it skips
the following stage and trivially assigns uniform weights to each
node.

Our preliminary results were taken in an AMD Opteron(tm)
Processor 6168 with eight nodes, each hosting six cores. Each CPU
is locally connected with a 16GB memory node. The server system
uses the Linux kernel (version 3.16.0). Figure 3 shows the bandwidth
from one node (source) to all the other nodes (destination) on our
system. As it is evident, interconnect links exhibit many asymmetric
disparities.

We used an instrumented version of Streamcluster, a data-intensive
PARSEC(2] benchmark suite to show how data placement affects
performance. For data size, the "native” input set was used. This
benchmark was chosen because of its memory-intensiveness. We
consider the Streamcluster benchmark under different thread place-
ments for 12 threads (pinned on 2 worker nodes), 18 threads (3
worker nodes) and 24 threads (4 worker nodes). Naturally, the
more threads are spawned, the highest the memory demand, thus
the application becomes more bandwidth-intensive. The pinning of
benchmark processes is done at run-time using the numactl tool[11].
The mapping of shared memory pages to nodes is done using our
memory allocation library. We measure the average execution time
over 5 runs.

For space limitations, we omit a broader evaluation with other
types of benchmarks.

Figure 4 shows the performance difference in completion time
of Streamcluster under different memory management policies and
different thread placements. Here, we picked the best well con-
nected nodes for thread placement, which is a common strategy
[13]. The results presented in Figure 4 show that, with a few excep-
tions, AAPP achieves substantial performance gains relatively to
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[ AaPP
100

80

40

Execution time (sec)

01 014 145 1245

Worker Nodes

Figure 4: Performance of Streamcluster with 24 threads on 4
worker nodes, with 18 threads on 3 worker nodes and with
12 threads on 2 worker nodes under WOUI, AAPP-Uniform
and AAPP

WOUI, with an average speedup of 1.4x. This is because AAPP dra-
matically reduces memory controller and interconnect congestion
by alleviating the load imbalance. AAPP also outperforms AAPP-
Uniform as it takes into account how the nodes of a system are
connected (asymmetry-aware).

The results show that the advantage of AAPP increases with
a combination of two factors: i) the application exhibits higher
memory demand; and ii) the memory capacity between the nodes
holding pages and the worker nodes are more unbalanced.

The first factor (memory demand) allows AAPP opt for a global
page placement, instead of the common practice of restricting page
placement to the worker nodes. The gains of this smarter strategy
are evident when we compare the performance of AAPP-Uniform
and WOUI on the experiments with 3 and 4 worker nodes (18 and
24 threads, resp.). In contrast, the experiment with fewer threads
(hence, lower memory demand) reflects a case where reaching out
for the non-worker nodes for placing pages is not advantageous,
hence the performance of AAPP becomes closer to the trivial WOUL

The impact of the second factor (capacity asymmetry) is evident
when we compare the performance of AAPP with AAPP-Uniform.
In fact, the scenarios which yielded the highest bandwidth asym-
metry (between the nodes holding pages and the worker nodes)
are precisely the ones where an appropriate weight selection leads
to stronger speedups. At the extreme of high asymmetry, like the
0-1-4 and 1-4-5 experiments, AAPP achieves the highest gains over
the uniform policy. In contrast, the 0-1 scenario, where pages are
placed only at the worker nodes, is only slightly asymmetric since
the two worker nodes share very similar high-bandwidth links be-
tween them; hence, AAPP will effectively select a uniform weight
distribution in this case.

Table 1 shows that the pages are allocated across the nodes in
proportion to their node-to-worker capacities.
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Table 1: Memory allocation ratio for Worker Nodes 0, 1 and
4

Node | Capacity (GB/s) | Weight (%)
0 4.4 21.2

1 4.2 20.2

2 1.7 8.2

3 14 6.7

4 3.3 15.9

5 2.7 13.0

6 1.7 8.2

7 14 6.7

Overall, our evaluation demonstrates that asymmetry-aware poli-
cies like AAPP are promising in that they provide significant perfor-
mance gains over conventional policies like WOUI with memory-
intensive benchmarks.

4 RELATED WORK

Optimizing thread and memory placement on NUMA systems has
been extensively studied [4, 6, 12-16]. The most common strategy
for thread and data placement in NUMA is locating data as close as
possible to cores. However, dynamic conditions of the architecture
resources such as congestion on the interconnect and the memory
controller often lead to other allocation decisions. For instance,
when the nodes are connected by links of different bandwidth, we
must consider not only whether the threads and data are placed on
the same or different nodes, but how these nodes are connected[13].
As another example, it turns out that interleaving within the worker
nodes dramatically reduces memory controller and interconnect
congestion by alleviating the load imbalance and mitigating traffic
hot-spots. This results in improved memory latency[6]. Addition-
ally, when a memory controller linked to local memory is congested,
placing data in remote memory instead of local memory could yield
better performance [14].

As a general comparison, we observed that most related work
either performs thread or data placement, but not both of them
together. Thread placement mechanisms such as [17], are not able
to reduce the amount of remote memory accesses on NUMA ar-
chitectures. On the other hand, data placement mechanisms such
as [6], are not able to reduce cache misses or correctly handle
the mapping of shared pages. Existing mechanisms that perform
both placements together have several disadvantages. For instance,
[13] uses a simpler/best-effort heuristics to find the best thread
placements which might not be optimal and also only considers in-
terconnect asymmetry as the only NUMA memory resource. On the
other hand, Cruz et al’s solution[5] requires hardware support and
doesn’t consider the NUMA asymmetry. Several other proposals
require specific architectures, APIs or programming languages to
work, limiting their applicability. For instance, Pandia [8] assumes
a fully-connected symmetric interconnect which removes some
of the complexities observed in this research. Prior works such as
the ones presented in [1, 19], investigate page placement strategies
within heterogeneous memory systems, thus they are insightful to
our work.

Recent works such as [3, 9] are exclusively dedicated to discov-
ering NUMA topologies, hence they complement our work.

5 CONCLUSION

Although new thread placement approaches for asymmetric NUMA
systems have recently emerged, it is perhaps surprising to observe
that the standard techniques for page placement still rely on the
obsolete assumption of a symmetric architecture. This paper pro-
poses AAPP, a novel approach for near-optimal placement of shared
pages in asymmetric NUMA systems. Our initial results suggest that
there is an unexplored opportunity in incorporating the asymme-
try of NUMA topologies when placing pages of memory-intensive
applications.
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