ShieldBox

Secure Middleboxes using Shielded Execution

Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, Christof Fetzer

ACM SIGCOMM SOSR 2018

Middleboxes in the Cloud

Security Issues

- Cheap computation resources Image: Cheap computation resources
- NFV advances 🛛
- Low trust environment 🙁
 - Observe private data
 - Extract encryption keys
 - Learn configuration

State-Of-the-Art Systems

Problem Statement

How to securely outsource middleboxes to the untrusted cloud without sacrificing performance while supporting a wide range of NFs?

ShieldBox

ShieldBox:

• Middlebox framework with shielded execution

Design Goals

- **Security** strong confidentiality and integrity guarantees
- **Performance** near-native throughput and latency
- **Generality** supports a wide range of NFs
- **Transparency** portable, configurable, and verifiable architecture

Outline

- Motivation
- Design
- Evaluation
- Summary

Security	
Performance	
Usability	

~	Security	Intel SGX
	Performance	
	Usability	

Intel SGX allows creation and management of **enclaves**.

User Application (Untrusted Memory)

Intel SGX allows creation and management of **enclaves**.

Intel SGX allows creation and management of **enclaves**.

Intel SGX allows creation and management of **enclaves**.

Intel SGX allows creation and management of **enclaves**.

Intel SGX allows creation and management of **enclaves**.

- Restrictions on allowed instructions:
 - syscall
 - o rdtsc

Intel SGX allows creation and management of **enclaves**.

- Restrictions on allowed instructions:
 - syscall
 - o rdtsc
- High overheads for:
 - Secure memory paging
 - Enclave entry/exit

System Overview

>	Security	Intel SGX & SCONE [OSDI'16]
	Performance	
	Usability	

System Overview

~	Security	Intel SGX & SCONE [OSDI'16]
~	Performance	DPDK
	Usability	

System Overview

~	Security	Intel SGX & SCONE [OSDI'16]
~	Performance	DPDK
~	Usability	Click Router [TOCS'00]

- 1. DPDK outside ecalls
 - High overhead
 High overhead
 - Reengineering 🙁
 - Reduced TCB 😳

Core 1	Core 2
Enclave	
Click	DPDK

1. DPDK outside - ecalls

- High overhead 🙁
- Reengineering 🙁
- Reduced TCB 😳

- 2. DPDK outside sibling core
 - Overhead in some cases

...

- Reengineering 🙁
- Reduced TCB 😳

Enclave	
Click	DPDK

Core 2

Enclave
Click
DPDK

- 1. DPDK outside ecalls
- High overhead 🙁
- Reengineering 🙁
- Reduced TCB 😳

- 2. DPDK outside sibling core
 - Overhead in some cases 😕
 - Reengineering 🙁

Core 1

• Reduced TCB 😳

3. DPDK inside enclave

- Low overhead 😳
- No reengineering 💿
- Increased TCB 🙁

Partitioning ShieldBox - DPDK

• NIC can't deliver packets directly to enclave.

Partitioning ShieldBox - DPDK

- NIC can't deliver packets directly to enclave:
 - Allocate hugepage memory outside
 - Packets and mbufs delivered to hugepages

ShieldBox Features

• Security

- lago Attack Protection
- New Elements
- Remote Attestation and Configuration System

• Performance

- On-NIC Time Source
- Optimizations over standard Click

• Features

- Middlebox State Persistence
- Network Function Chaining
- New Elements

New Elements

- ToEnclave:
 - Copies packet data into enclave

New Elements

- ToEnclave:
 - Copies packet data into enclave
- Seal:
 - Encrypts packet using AES-GCM

New Elements

- ToEnclave:
 - Copies packet data into enclave
- Seal:
 - Encrypts packet using AES-GCM
- Unseal:
 - Decrypts an AES-GCM encrypted packet

New Elements

- ToEnclave:
 - Copies packet data into enclave
- Seal:
 - Encrypts packet using AES-GCM
- Unseal:
 - Decrypts an AES-GCM encrypted packet
- HyperScan, DPDKRing, StateFile:
 - See paper!

NIC

Hugepage Memory		
Packet Data (0x7F0000-0x7FFFFF)	Packet data	
		NIC

- clock_gettime
 - Hot sthread: reduce performance

- clock_gettime
 - Hot sthread: reduce performance
 - Cold sthread: huge overhead

- clock_gettime
 - Hot sthread: reduce performance
 - Cold sthread: huge overhead
- rdtsc
 - Causes enclave exit
 - Performance loss due to TLB flush

- clock_gettime
 - Hot sthread: reduce performance
 - Cold sthread: huge overhead
- rdtsc
 - Causes enclave exit
 - Performance loss due to TLB flush
- On-NIC Timer
 - Acceptable performance

- clock_gettime
 - Hot sthread: reduce performance
 - Cold sthread: huge overhead
- rdtsc
 - Causes enclave exit
 - Performance loss due to TLB flush
- On-NIC Timer
 - Acceptable performance

All of these time sources are untrusted.

Outline

- Motivation
- Design
- Evaluation
- Summary

Evaluation

- What is the throughput and latency of our system?
- What is the influence of ToEnclave element on the performance?
- Other questions: see in the paper.

Throughput: Router Use Case

Throughput: Router Use Case

Throughput: Router Use Case

Latency: Router Use Case

Latency: Router Use Case

ToEnclave Influence: EtherMirror

• Cheap NF \rightarrow worst-case example

ToEnclave Influence: EtherMirror

IoEnclave Influence: EtherMirror							
		Native Native + ToEnc		ShieldBox 📼 ShieldBox + ToEnc 📼	eldBox === the better ToEnc == +		
Throughput, Gb/s	40				7		
	35				-		
	30				-		
	25				-		
	20				-		
	15				-		
	10				-		
	5				-		
	0	6 ₄ 1 ₂₈	256 512	1024 1500	J		
Packet Size, bytes							

-. . .

ToEnclave Influence: EtherMirror

~15% throughput reduction due to the extra memory copy

The higher

Outline

- Motivation
- Design
- Evaluation
- Summary

- Cloud:
 - Abundant computational resources
 - \circ Limited trust to platform \asymp

- Cloud:
 - Abundant computational resources
 - Limited trust to platform 🙁
- TEEs allow construction of middleboxes in the cloud:
 - Achieve end-to-end trust
 - Flexible frameworks for NF construction available

• High performance:

- Line rate with typical Network Functions by using DPDK
- Minimal overhead from ToEnclave element

• High performance:

- Line rate with typical Network Functions by using DPDK
- Minimal overhead from ToEnclave element
- Secure:
 - End-to-end trusted NF system with Intel SGX and SCONE
 - Enables use of modern cryptography

• High performance:

- Line rate with typical Network Functions by using DPDK
- Minimal overhead from ToEnclave element
- Secure:
 - End-to-end trusted NF system with Intel SGX and SCONE
 - Enables use of modern cryptography
- Practical:
 - Allows construction of wide range of Network Functions
 - Easy management using Dockerfiles from SCONE remote configuration

• High performance:

- Line rate with typical Network Functions by using DPDK
- Minimal overhead from ToEnclave element
- Secure:
 - End-to-end trusted NF system with Intel SGX and SCONE
 - Enables use of modern cryptography
- Practical:
 - Allows construction of wide range of Network Functions
 - Easy management using Dockerfiles from SCONE remote configuration

Thank You!
Funding

This project was funded by the European Union's Horizon 2020 program under grant agreements No. 645011 (SERECA), No. 690111 (SecureCloud), and No. 690588 (SELIS)

Funding

This project was funded by the European Union's Horizon 2020 program under grant agreements No. 645011 (SERECA), No. 690111 (SecureCloud), and No. 690588 (Selis)

Design Challenges

- Modern middleboxes are expected to run at line speeds (10-40Gb/s)
- Overheads of 10x from asynchronous system call interface
- High impact on latency without optimizations (2-3x)
- SGX applications require a partitioning scheme

ShieldBox TCB

Trusted Computing Base:

- Click code and data
- DPDK code and non-hugepages data
- SCONE

ShieldBox: Security, Deployment, Limitations

Security:

- Confidentiality for data inside enclave
- Integrity for data and processing functions

Deployment scenarios:

- Out of scope
- see APLOMB [SIGCOMM'12]

Limitations:

• No flow reassembly

Core 1		 Core 2
	Enclave	Enclave
	Click	Click
	DPDK	DPDK

Outline

- Motivation
- Design
- Evaluation
- Summary

DPDK and SGX Interaction

DPDK Initialization:

- SCONE system calls
- Minor patching for SCONE musl-libc

Obtaining huge pages:

• Directly, with disabled FS shielding

NIC access:

• Standard DPDK driver, disabled FS shielding

Middleboxes in the cloud

- Long communication session setup time
- Require protocol modifications 😕
- Offer limited functionality 😕

ShieldBox features:

• Middlebox framework with shielded execution

System overview

SCONE

Secure Container Framework

Runs unmodified POSIX applications inside enclave:

- Memory management
- System calls
- Userspace threading

Provides remote attestation and configuration service.

Usage Scenarios

Developer writes a Click program and distributes it to ShieldBox via CAS

• High-level, easy-to-use API

When necessary Click element is missing, developer to ShieldBox via C++ API

• Low-level, flexible API

Operator can monitor the operation of the system using ControlSocket

Evaluation Setup

System Under Test (ShieldBox):

- Intel Xeon E3-1270 v5 (3.6 GHz, 4 cores, 8 HT)
- 32GB RAM

Load Generator:

- Intel Xeon D-1540 (2 GHz, 8 cores, 16 HT)
- 32GB RAM

Connection: Intel XL710 40Gb NIC between the machines