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Monitoring of distributed systems

● Most distributed systems are constantly monitored
- Amazon CloudWatch, Azure Monitor, and Google StackDriver
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● Goals of monitoring
- Efficiency  (Resource management, Autoscaling)
- Dependability (detect and fix failures)
- etc.



Challenges

Distributed systems are complex
● Uber : 500+ services
● LendingClub:  from 5 services in 2013 to 139 services in 2015

To monitor and understand them is difficult

● Netflix: 2,000,000 metrics
● OpenStack: 17,608 metrics
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Metrics * machines * services → Information overflow



Problem statement

Design goals
● Utilize existing monitoring infrastructure without modifying the application
● Make it general
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How to derive actionable insights from monitored metrics in distributed systems?

Previous work
● Limited to message-level happens-before relationships
● Requires application-specific instrumentation



Contributions

1. Sieve: a general framework to derive actionable insights from monitored metrics
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2. Applied Sieve to two case studies:
○ Root cause analysis in OpenStack
○ Autoscaling in ShareLaTex



Key ideas of Sieve
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1. Metric reduction engine: 
○ Filter metrics per service that contains redundant information

2.     Metric dependency extractor
○ Infer predictive-causal relationships between applications

Complex distributed systems
● Several services
● Each service exporting several metrics



Outline

✓ Introduction
● Design
● Evaluation
● Case studies
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Sieve overview
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Load the

application

2
Reduce metrics

3 
Identify 

relationships



#1: Load generator
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● Characteristics of load generator:
○ Runs in offline mode
○ Application-specific

● Our case studies:
○ OpenStack: Used the shipped load generator Rally
○ ShareLaTex: Self written, simulates virtual users

● Purpose: 
○ Generate load with known random distribution to derive metrics
○ Derive a call graph for inferring communication b/w services



#1: Derive metrics

Metrics

System

Application

System Metrics

● CPU usage
● Disk I/O
● Cache misses

Application Metrics

● Timing of db queries
● Business metrics 
● HTTP request counts

 …
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Sieve overview
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#2: Reduce metrics

A single service

N metrics

K metric 
clusters

(K<<N)

Cluster of metrics that 
are highly correlated
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#2: Time series clustering 

Solution: K-Shape time-series clustering [SIGMOD’15]

13

Caveat: Preprocessing is necessary
● Filter metrics with constant values or low variance/frequency
● Normalize units: bytes/s, MB, s -> Zscore

● Unsupervised algorithm
● Robust to distortion
● Scales linearly 



Sieve overview
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Load the

application
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Reduce metrics
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Identify 

relationships



#3: Identify relationships

Service  A Service B

B has a dependency with A
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#3: Granger causality

• Statistical property: 
„X granger-cause Y”

≙ X provides statistically significant   
information about the future of Y
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• Methodology: Create a linear 
regression model (OLS)

– Y = a*X(t-1) + b * X(t-2) ...

• Null hypothesis test using F-Statistics



#3: Call graph
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Record communication patterns by logging network related syscalls 

Points to service from 
consumer of the service



#3: Dependency graph
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Metric pairs where granger 
causality was found



Outline

✓ Introduction
✓ Design
● Evaluation
● Case studies

○ Root cause analysis
○ Autoscaling
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Evaluation: Microbenchmarks
What is the resulting improvement in monitoring overhead? 

(more results in the paper)
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Experimental setup:
● ShareLaTex application
● 10 node cluster



Reduction in monitoring overheads
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Sieve reduces monitoring overheads up to 90% 

Higher is better



Case study #1: Root Cause Analysis (RCA)
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Result: RCA
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● Symptom: When launching VMs, they go into failed state despite the 
availability of compute nodes. 

● Root cause: Crash in Neutron service (provides network)

● Results:



Case study #2: Autoscaling
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Most influential metric: http-requests_Project_id_GET

Other relations

Relations w/
http-requests_Project_id_GET_mean



Result: Autoscaling
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● Application: ShareLaTex

● Workload: World cup ‘98 traces

● Baseline: Default autoscaling rule w/o application knowledge

● Setup:  12 t2.large VM-Instances on Amazon EC2 



Result: Autoscaling
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 Metrics selected by Sieve instead of CPU usage lead to:
● Higher CPU utilisation 
● Less SLA violations & scaling actions

+50 %

-60 %
-30 %



Summary
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Sieve is a general framework for distributed systems:
● To derive actionable insights from monitored metrics
● Efficient and robust way to reduce the complexity of monitoring

Sieve applied to two case studies:
● Root cause analysis in OpenStack
● Autoscaling for ShareLaTex

Thanks!
Source code: https://sieve-microservices.github.io/

https://sieve-microservices.github.io/
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Sieve overview
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1
Load the

application

2
Reduce metrics

3 
Identify 

relationships

- Excite components to 
produce metrics (for Step 
2) 
- Produce call graph among 
components (for Step 3)

Analyze each 
component’s metrics and 
filter redundancies (for 
Step 3)

Use important metrics 
from Step 2 and call 
graph from step 1 to 
produce relations



Case study #1: RCA in OpenStack
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1. Pick anomalies from OpenStack’s bugtracker with known root causes 
2. Run Openstack on both faulty and healthy versions, and run load generator 

Rally
3. Generate ranked list of possible root causes, and compare it with known 

root cause

Methodology:



Case study #1: RCA in OpenStack
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1. Pick anomalies from OpenStack’s bugtracker with known root causes 
2. Run Openstack on both pre- and post-commit versions, and run load 

generator Rally
3. Generate ranked list of possible root causes, and compare it with known 

root cause

Methodology:



Evaluation methodology: RCA
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● OpenStack, a cloud management software
○ 47 components (total)
○ 17,608 metrics

1. Pick anomalies from OpenStack’s bugtracker with known root causes 
2. Run Openstack on both pre- and post-commit versions, and run load 

generator Rally
3. Generate ranked list of possible root causes, and compare it with known 

root cause

Methodology:



[Step #1] Callgraph design

Getting the callgraph

sysdig.ko

Client Service

recvfrom fd=3(192.168.8.17:52252 -> 192.168.8.36:http) size=2048

Syscalls trace
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Case Study: Autoscaling engine with Kapacitor
var cpu_percentile = stream
    |from()
        .measurement('docker_cpu')
        .where(lambda: "cont_image" =~ /sharelatex-web/)
    |window()
        .period(10s)
        .every(1s)
    |percentile('usage_percent', 95.0)
    |log()

var scale_out = cpu_percentile
    @scale()
        .simulate(FALSE)

.id('1s33') // web service id
        .when('percentile > 90')
        .by('current + 2')
        .min_instances(1)
        .max_instances(6)
        .cooldown('10s')

34



Workload: Request rate for Worldcup 98
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Q3: Consistency across workloads

36

● Pairwise comparison cluster assignment 
of different workloads

● AMI: 
○ adjusted mutual information
○ entropy measure how different two 

cluster assignments are
○ Higher is better (best at 1.0)

→ Clusters are consistent: Most services are 
in range of 0.5 to 0.9

● Other results in the thesis:
○ Graphical and semantical 

evaluation of cluster
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[Step #2] Detect and eliminate monotonic 
counters



Callgraph: overhead
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Case study: Autoscaling

Application
(ShareLatex)

Monitoring

Telegraf

Scaling

Kapacitor

UDF: 
kapacitor-scaling
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[Step #1] Load the application: Framework

Application Monitoring

Telegraf

● Metric collector
● Application aware
● Input protocols: Statsd

● Time-series database
● Horizontal scaleable
● SQL 40



[Step #2] Reducing metrics: K-Shape example
Example: Clusters of chat component

 

Cluster centroid

Metrics of cluster 1
● Memory: pgfault, 

pgpgin, total_pgfault, 
...

Metrics of cluster 2
● HTTP: http-room_project_id_messages_POST 
● Database: mongo-messages_insert, 

mongo-rooms_query_project_id        
● Network: rx_bytes, tx_bytes, ...
● CPU: usage_in_kernelmode, usage_in_usermode, ...41



Sieve - A system overview
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Q1: Reduction of metrics
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On average Sieve reduces metrics by  92%



Key ideas
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The underlying intuition behind Sieve is two-fold: Firstly, in the metric dimension, some 
metrics of a component may behave with similar patterns as other metrics of that 
component. Secondly, in the component dimension, there are dependencies between 
components. As a result, monitoring all metrics of all components at runtime may be 
unnecessary and inefficient (as components are not independent).



[Step #2] Reducing metrics: Preprocessing
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1. Filter metrics with constant values or low variance/frequency
2. Normalize units:

● bytes/s, MB, s -> Zscore
● Zscore(s) = (x-𝜇)/𝜎
● 𝜇 .. mean; 𝜎 .. standard deviation

3. Detect and derive monotonic counters



[Step #2] Reducing metrics: Clustering 

Solution: K-Shape [Sigmod2015]

● Unsupervised time-series cluster algorithm
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● Robust to distortion in 
○ Phase
○ Amplitude
○ And time (or time lags)

● Scales linearly well with the number of metrics



Case study: RCA details
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Result: RCA
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● Symptom: When launching VMs, they go into failed state despite the 
availability of compute nodes. (More bugs in the paper)

● Root cause: Crash in Neutron service (provides network)

● Results:



Result: RCA
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● Symptom: When launching VMs, they go into failed state despite the 
availability of compute nodes. (More bugs in the paper)

● Root cause: Crash in Neutron service (provides network)

● Results:

Component # filtered metrics Ranking

Nova API 29 / 59 (-.51%) 1

Nova libvirt 21 / 39 (-.46%) 2

Neutron Server 12 / 42 (-.71%) 3

RabbitMQ 11 / 57 (-.81%) 4

Neutron L3 agent 7 / 39 (-.82%) 5



Evaluation results: RCA anomaly #1
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● Symptom: Error message ‘No valid host was found. There are not enough 
hosts available.’ when launching VM, despite the availability of compute 
nodes.

● Root cause: Crash in Neutron component (#1533942 in Launchpad)

● Results: Component # filtered metrics Ranking

Nova API 29 / 59 (-.51%) 1

Nova libvirt 21 / 39 (-.46%) 2

Neutron Server 12 / 42 (-.71%) 3

RabbitMQ 11 / 57 (-.81%) 4

Neutron L3 agent 7 / 39 (-.82%) 5



Outline

✓ Introduction
✓ Design
● Evaluation 
● Case studies

a. Root cause analysis
b. Autoscaling
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