
Sieve
Actionable Insights from

Monitored Metrics in Distributed Systems
https://sieve-microservices.github.io/

Jörg Thalheim, Pramod Bhatotia
University of Edinburgh

Christof Fetzer
TU Dresden

Istemi Ekin Akkus, Ruichuan Chen
NOKIA Bell Labs

Antonio Rodrigues
CMU

Lei Jiao
University of Oregon

Bimal Viswanath
University of Chicago

ACM/IFIP/USENIX Middleware 2017

https://sieve-microservices.github.io/

Monitoring of distributed systems

● Most distributed systems are constantly monitored
- Amazon CloudWatch, Azure Monitor, and Google StackDriver

2

● Goals of monitoring
- Efficiency (Resource management, Autoscaling)
- Dependability (detect and fix failures)
- etc.

Challenges

Distributed systems are complex
● Uber : 500+ services
● LendingClub: from 5 services in 2013 to 139 services in 2015

To monitor and understand them is difficult

● Netflix: 2,000,000 metrics
● OpenStack: 17,608 metrics

3

Metrics * machines * services → Information overflow

Problem statement

Design goals
● Utilize existing monitoring infrastructure without modifying the application
● Make it general

4

How to derive actionable insights from monitored metrics in distributed systems?

Previous work
● Limited to message-level happens-before relationships
● Requires application-specific instrumentation

Contributions

1. Sieve: a general framework to derive actionable insights from monitored metrics

5

2. Applied Sieve to two case studies:
○ Root cause analysis in OpenStack
○ Autoscaling in ShareLaTex

Key ideas of Sieve

6

1. Metric reduction engine:
○ Filter metrics per service that contains redundant information

2. Metric dependency extractor
○ Infer predictive-causal relationships between applications

Complex distributed systems
● Several services
● Each service exporting several metrics

Outline

✓ Introduction
● Design
● Evaluation
● Case studies

7

Sieve overview

8

1
Load the

application

2
Reduce metrics

3
Identify

relationships

#1: Load generator

9

● Characteristics of load generator:
○ Runs in offline mode
○ Application-specific

● Our case studies:
○ OpenStack: Used the shipped load generator Rally
○ ShareLaTex: Self written, simulates virtual users

● Purpose:
○ Generate load with known random distribution to derive metrics
○ Derive a call graph for inferring communication b/w services

#1: Derive metrics

Metrics

System

Application

System Metrics

● CPU usage
● Disk I/O
● Cache misses

Application Metrics

● Timing of db queries
● Business metrics
● HTTP request counts

 …

10

Sieve overview

11

1
Load the

application

2
Reduce metrics

3
Identify

relationships

#2: Reduce metrics

A single service

N metrics

K metric
clusters

(K<<N)

Cluster of metrics that
are highly correlated

12

#2: Time series clustering

Solution: K-Shape time-series clustering [SIGMOD’15]

13

Caveat: Preprocessing is necessary
● Filter metrics with constant values or low variance/frequency
● Normalize units: bytes/s, MB, s -> Zscore

● Unsupervised algorithm
● Robust to distortion
● Scales linearly

Sieve overview

14

1
Load the

application

2
Reduce metrics

3
Identify

relationships

#3: Identify relationships

Service A Service B

B has a dependency with A

15

#3: Granger causality

• Statistical property:
„X granger-cause Y”

≙ X provides statistically significant
information about the future of Y

16

• Methodology: Create a linear
regression model (OLS)

– Y = a*X(t-1) + b * X(t-2) ...

• Null hypothesis test using F-Statistics

#3: Call graph

17

Record communication patterns by logging network related syscalls

Points to service from
consumer of the service

#3: Dependency graph

18

Metric pairs where granger
causality was found

Outline

✓ Introduction
✓ Design
● Evaluation
● Case studies

○ Root cause analysis
○ Autoscaling

19

Evaluation: Microbenchmarks
What is the resulting improvement in monitoring overhead?

(more results in the paper)

20

Experimental setup:
● ShareLaTex application
● 10 node cluster

Reduction in monitoring overheads

21
Sieve reduces monitoring overheads up to 90%

Higher is better

Case study #1: Root Cause Analysis (RCA)

22

Before
no anomaly

After
with anomaly

missing
edge: hint

on root cause

C

clusterservice

B

A

CB

A

Rank Service Metrics

1st A of cluster 2

2nd C of cluster 4

3rd B of cluster 1

Output
root cause analysis

ranking

2

1

3

4

2

1

3

4

Result: RCA

23

● Symptom: When launching VMs, they go into failed state despite the
availability of compute nodes.

● Root cause: Crash in Neutron service (provides network)

● Results:

Case study #2: Autoscaling

24

Most influential metric: http-requests_Project_id_GET

Other relations

Relations w/
http-requests_Project_id_GET_mean

Result: Autoscaling

25

● Application: ShareLaTex

● Workload: World cup ‘98 traces

● Baseline: Default autoscaling rule w/o application knowledge

● Setup: 12 t2.large VM-Instances on Amazon EC2

Result: Autoscaling

26

 Metrics selected by Sieve instead of CPU usage lead to:
● Higher CPU utilisation
● Less SLA violations & scaling actions

+50 %

-60 %
-30 %

Summary

27

Sieve is a general framework for distributed systems:
● To derive actionable insights from monitored metrics
● Efficient and robust way to reduce the complexity of monitoring

Sieve applied to two case studies:
● Root cause analysis in OpenStack
● Autoscaling for ShareLaTex

Thanks!
Source code: https://sieve-microservices.github.io/

https://sieve-microservices.github.io/

28

Sieve overview

29

1
Load the

application

2
Reduce metrics

3
Identify

relationships

- Excite components to
produce metrics (for Step
2)
- Produce call graph among
components (for Step 3)

Analyze each
component’s metrics and
filter redundancies (for
Step 3)

Use important metrics
from Step 2 and call
graph from step 1 to
produce relations

Case study #1: RCA in OpenStack

30

1. Pick anomalies from OpenStack’s bugtracker with known root causes
2. Run Openstack on both faulty and healthy versions, and run load generator

Rally
3. Generate ranked list of possible root causes, and compare it with known

root cause

Methodology:

Case study #1: RCA in OpenStack

31

1. Pick anomalies from OpenStack’s bugtracker with known root causes
2. Run Openstack on both pre- and post-commit versions, and run load

generator Rally
3. Generate ranked list of possible root causes, and compare it with known

root cause

Methodology:

Evaluation methodology: RCA

32

● OpenStack, a cloud management software
○ 47 components (total)
○ 17,608 metrics

1. Pick anomalies from OpenStack’s bugtracker with known root causes
2. Run Openstack on both pre- and post-commit versions, and run load

generator Rally
3. Generate ranked list of possible root causes, and compare it with known

root cause

Methodology:

[Step #1] Callgraph design

Getting the callgraph

sysdig.ko

Client Service

recvfrom fd=3(192.168.8.17:52252 -> 192.168.8.36:http) size=2048

Syscalls trace

33

Case Study: Autoscaling engine with Kapacitor
var cpu_percentile = stream
 |from()
 .measurement('docker_cpu')
 .where(lambda: "cont_image" =~ /sharelatex-web/)
 |window()
 .period(10s)
 .every(1s)
 |percentile('usage_percent', 95.0)
 |log()

var scale_out = cpu_percentile
 @scale()
 .simulate(FALSE)

.id('1s33') // web service id
 .when('percentile > 90')
 .by('current + 2')
 .min_instances(1)
 .max_instances(6)
 .cooldown('10s')

34

Workload: Request rate for Worldcup 98

35

Q3: Consistency across workloads

36

● Pairwise comparison cluster assignment
of different workloads

● AMI:
○ adjusted mutual information
○ entropy measure how different two

cluster assignments are
○ Higher is better (best at 1.0)

→ Clusters are consistent: Most services are
in range of 0.5 to 0.9

● Other results in the thesis:
○ Graphical and semantical

evaluation of cluster

37

[Step #2] Detect and eliminate monotonic
counters

Callgraph: overhead

38

Case study: Autoscaling

Application
(ShareLatex)

Monitoring

Telegraf

Scaling

Kapacitor

UDF:
kapacitor-scaling

39

[Step #1] Load the application: Framework

Application Monitoring

Telegraf

● Metric collector
● Application aware
● Input protocols: Statsd

● Time-series database
● Horizontal scaleable
● SQL 40

[Step #2] Reducing metrics: K-Shape example
Example: Clusters of chat component

Cluster centroid

Metrics of cluster 1
● Memory: pgfault,

pgpgin, total_pgfault,
...

Metrics of cluster 2
● HTTP: http-room_project_id_messages_POST
● Database: mongo-messages_insert,

mongo-rooms_query_project_id
● Network: rx_bytes, tx_bytes, ...
● CPU: usage_in_kernelmode, usage_in_usermode, ...41

Sieve - A system overview

42

Q1: Reduction of metrics

43
On average Sieve reduces metrics by 92%

Key ideas

44

The underlying intuition behind Sieve is two-fold: Firstly, in the metric dimension, some
metrics of a component may behave with similar patterns as other metrics of that
component. Secondly, in the component dimension, there are dependencies between
components. As a result, monitoring all metrics of all components at runtime may be
unnecessary and inefficient (as components are not independent).

[Step #2] Reducing metrics: Preprocessing

45

1. Filter metrics with constant values or low variance/frequency
2. Normalize units:

● bytes/s, MB, s -> Zscore
● Zscore(s) = (x-𝜇)/𝜎
● 𝜇 .. mean; 𝜎 .. standard deviation

3. Detect and derive monotonic counters

[Step #2] Reducing metrics: Clustering

Solution: K-Shape [Sigmod2015]

● Unsupervised time-series cluster algorithm

46

● Robust to distortion in
○ Phase
○ Amplitude
○ And time (or time lags)

● Scales linearly well with the number of metrics

Case study: RCA details

47

Result: RCA

48

● Symptom: When launching VMs, they go into failed state despite the
availability of compute nodes. (More bugs in the paper)

● Root cause: Crash in Neutron service (provides network)

● Results:

Result: RCA

49

● Symptom: When launching VMs, they go into failed state despite the
availability of compute nodes. (More bugs in the paper)

● Root cause: Crash in Neutron service (provides network)

● Results:

Component # filtered metrics Ranking

Nova API 29 / 59 (-.51%) 1

Nova libvirt 21 / 39 (-.46%) 2

Neutron Server 12 / 42 (-.71%) 3

RabbitMQ 11 / 57 (-.81%) 4

Neutron L3 agent 7 / 39 (-.82%) 5

Evaluation results: RCA anomaly #1

50

● Symptom: Error message ‘No valid host was found. There are not enough
hosts available.’ when launching VM, despite the availability of compute
nodes.

● Root cause: Crash in Neutron component (#1533942 in Launchpad)

● Results: Component # filtered metrics Ranking

Nova API 29 / 59 (-.51%) 1

Nova libvirt 21 / 39 (-.46%) 2

Neutron Server 12 / 42 (-.71%) 3

RabbitMQ 11 / 57 (-.81%) 4

Neutron L3 agent 7 / 39 (-.82%) 5

Outline

✓ Introduction
✓ Design
● Evaluation
● Case studies

a. Root cause analysis
b. Autoscaling

51

