
Slider: Incremental Sliding Window Analytics

Pramod Bhatotia
MPI-SWS

bhatotia@mpi-sws.org

Umut A. Acar
CMU and INRIA

umut@cs.cmu.edu

Flavio P. Junqueira
Microsoft Research

fpj@microsoft.com

Rodrigo Rodrigues
NOVA Univ. Lisbon/CITI/NOVA-LINCS

rodrigo.rodrigues@fct.unl.pt

ABSTRACT

Sliding window analytics is often used in distributed data-parallel
computing for analyzing large streams of continuously arriving data.
When pairs of consecutive windows overlap, there is a potential to
update the output incrementally, more efficiently than recomputing
from scratch. However, in most systems, realizing this potential re-
quires programmers to explicitly manage the intermediate state for
overlapping windows, and devise an application-specific algorithm
to incrementally update the output.

In this paper, we present self-adjusting contraction trees, a set
of data structures and algorithms for transparently updating the
output of a sliding window computation as the window moves,
while reusing, to the extent possible, results from prior computa-
tions. Self-adjusting contraction trees structure sub-computations
of a data-parallel computation in the form of a shallow (logarithmic
depth) balanced data dependence graph, through which input chan-
ges are efficiently propagated in asymptotically sub-linear time.

We implemented self-adjusting contraction trees in a system call-
ed Slider. The design of Slider incorporates several novel tech-
niques, most notably: (i) a set of self balancing trees tuned for dif-
ferent variants of sliding window computation (append-only, fixed-
width, or variable-width slides); (ii) a split processing mode, where
a background pre-processing stage leverages the predictability of
input changes to pave the way for a more efficient foreground pro-
cessing when the window slides; and (iii) an extension of the data
structures to handle multiple-job workflows such as data-flow query
processing. We evaluated Slider using a variety of applications
and real-world case studies. Our results show significant perfor-
mance gains without requiring any changes to the existing applica-
tion code used for non-incremental data processing.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Distributed systems

General Terms

Algorithms, Design, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Middleware’14, December 08 – 12, 2014, Bordeaux, France.
Copyright 2014 ACM 978-1-4503-2785-5/14/12
http://dx.doi.org/10.1145/2663165.2663334 ...$15.00.

1 Introduction

There is a growing use of “big data” systems for the parallel anal-
ysis of data that is collected over a large period of time. Either
due to the nature of the analysis, or in order to bound the compu-
tational complexity of analyzing a monotonically growing data set,
applications often resort to a sliding window analysis. In this type
of processing, the scope of the data analysis is limited to an inter-
val over the entire set of collected data, and, periodically, newly
produced inputs are appended to the window and older inputs are
discarded from it as they become less relevant to the analysis.

The basic approach for sliding window analytics is to recom-
pute over the entire window from scratch whenever the window
slides. Consequently, even old, unchanged data items that remain
in the window are reprocessed, thus consuming unnecessary com-
putational resources and limiting the timeliness of results.

One way to improve on the basic approach is to use incremen-
tal update mechanisms, where the outputs are updated to accom-
modate the arrival of new data instead of recomputing them from
scratch. Such incremental approaches can be significantly—often
asymptotically—more efficient than the basic approach, particu-
larly in cases when the size of the window is large relative to in-
crement by which the window slides.

The most common way to support incremental computation is to
rely on the application programmers to devise an incremental up-
date mechanism [28, 30, 34]. In such an approach, the programmer
has to design and implement a dynamic algorithm containing the
logic for incrementally updating the output as the input changes.
While dynamic algorithms can be efficient, research in the algo-
rithms community shows that they are often difficult to design, an-
alyze, and implement even for simple problems [8, 22, 25, 37].
Moreover, dynamic algorithms are overwhelmingly designed for
the uniprocessor computing model, making them ill-suited for the
parallel and distributed systems used in large-scale data analytics.

Given the efficiency benefits of incremental computation, our
work answers the following question: Is it possible to achieve the

benefits of incremental sliding window analytics without requiring

dynamic algorithms? Previous work on incremental computation
in batch-processing systems [18, 19, 27] shows that such gains are
possible to obtain in a transparent way, i.e., without changing the
original (single pass) data analysis code. However, these systems
did not leverage the particular characteristics of sliding windows
and resort solely to the memoization of sub-computations, which
still requires time proportional to the size of the whole data rather
(albeit with a small constant) than the change itself.

In this paper, we propose self-adjusting contraction trees, a set
of data structures for incremental sliding window analytics, where
the work performed by incremental updates is proportional to the
size of the changes in the window rather than the whole data. Us-

61

ing these data structures only requires the programmer to devise
a non-incremental version of the application code expressed using
a conventional data-parallel programming model. We then guar-
antee an automatic and efficient update of the output as the win-
dow slides. Moreover, we make no restrictions on how the window
slides, allowing it to shrink on one end and to grow on the other
end arbitrarily. However, as we show, more restricted changes lead
to simpler algorithms and more efficient updates.

Our approach for automatic incrementalization is based on the
principles of self-adjusting computation [8, 9, 11], where the idea
is to create a graph of data dependent sub-computations and propa-
gate changes through this graph. Overall, our contributions include:

• Self-adjusting contraction trees: A set of self-adjusting
data structures that are designed specifically for structuring
different variants of sliding window computation as a (shal-
low) balanced dependence graph. These balanced graphs
ensure that the work performed for incremental updates is
proportional to the size of the changes in the window (the
“delta”) incurring only a logarithmic—rather than linear—
dependency on the size of window (§3).

• Split processing algorithms: We introduce a split process-

ing model, where the incremental computation is divided into
a background pre-processing phase and a foreground pro-
cessing phase. The background processing takes advantage
of the predictability of input changes in sliding window an-
alytics to pave the way for a more efficient foreground pro-
cessing when the window slides (§4).

• Query processing—multi-level trees: We present an exten-
sion of the proposed data structures for multi-level workflows
to support incremental data-flow query processing (§5).

We implemented self-adjusting contraction trees in a system called
Slider, which extends Hadoop [1], and evaluated the effectiveness
of the new data structures by applying Slider to a variety of micro-
benchmarks and applications. Furthermore, we report on three real
world use cases: (i) building an information propagation tree [38]
for Twitter; (ii) monitoring Glasnost [26] measurement servers for
detecting traffic differentiation by ISPs; and (iii) providing peer ac-
countability in Akamai NetSession [12], a hybrid CDN architec-
ture. Our experiments show that self-adjusting contraction trees
can deliver significant performance gains for sliding window ana-
lytics without requiring any changes to the existing code.

The remainder of the paper is organized as follows. Section 2
presents an overview of the basic approach. The design of self-
adjusting contraction trees is detailed in Sections 3, 4 and 5. The
architecture of Slider is described in Section 6. Section 7 presents
an experimental evaluation of Slider, and our experience with the
case studies is reported in Section 8. Related work and conclusion
are presented in Section 9 and Section 10, respectively.

2 Overview

Our primary goal is to design data structures for incremental slid-
ing window analytics, so that the output is efficiently updated when
the window slides. In addition, we want to do so transparently,
without requiring the programmer to change any of the existing ap-
plication code, which is written assuming non-incremental (batch
model of) processing. In our prototype system called Slider, non-
incremental computations are expressed under the MapReduce [24]
programming model (or alternatively as Pig [20] programs), but
the data structures can be plugged into other data-parallel program-
ming models that allow for decomposing computations into asso-
ciative sub-computations, such as Dryad [29] and Spark [32].

Input

T1
T2

+

Input splits

Map task

per input split
M0 M1 M2 M3 M4 M5 M6

Shu!e

Output

Merge-sort

Reduce to

shu!ed & sorted

Map output

Time

Contraction

tree

M1 M2 M3

R

M5M0 M4 M6

C1

C5
C4

C2 C3

C6

Reused

Recomputed

Color code

Removed

R1 R2

Figure 1: Strawman design and contraction phase

2.1 Strawman Design

The design of self-adjusting contraction trees is based on self-adjust-
ing computation [8]. In this model, a computation is divided into
sub-computations, and then a dependence graph is constructed to
track control and data dependencies between all sub-computations.
Thereafter, a change propagation algorithm is used to update the
output by propagating the changes through the graph. The idea be-
hind change propagation is to initially identify a set of sub-comput-
ations that directly depend on the changed data and re-execute them.
The re-execution of a sub-computation may then modify other data,
causing other data-dependent sub-computations to be re-executed.
Change propagation terminates when all modified data and their
dependent sub-computations complete. For change propagation to
be efficient, it is important that (a) the computation is divided into
small enough sub-computations; and (b) no long chain of depen-
dencies exists between sub-computations. We call such computa-
tions stable because few of their sub-computations change when
the overall input is modified by a small amount.

To apply the principles of self-adjusting computation to a data
parallel programming model, the starting point for our strawman
design is to make the dependence graph match the data-flow graph
generated by the data-parallel model. The data-flow graph is repre-
sented by a DAG, where vertices are sub-computations or tasks, and
directed edges correspond to the data dependencies between tasks.
For incremental computation, the strawman approach memoizes
the outputs of all tasks, and, given a set of input changes, it prop-
agates these changes through the data-flow graph by reusing the
memoized output for sub-computations unaffected by the changes,
and re-computing the affected sub-computations.

In the case of MapReduce, vertices correspond to Map and Re-
duce tasks, and edges represent data transferred between tasks (as
depicted in Figure 1). For sliding window analytics, new data items
are appended at the end of the previous window and old data items
are dropped from the beginning. To update the output incremen-
tally, we launch a Map task for each new “split” (a partition of the
input that is handled by a single Map task) and reuse the results of
Map tasks operating on old but live data. We then feed the newly
computed results together with the reused results to Reduce tasks
to compute the final output.

This initial strawman design highlights an important limitation:
even a small change to the input can preclude the reuse of all the
work after the first level of nodes in the graph. This is because the
second level nodes (i.e., the Reduce tasks) take as input all values
for a given key (< ki >, < v1,v2, ..,vn >). In the example shown
in Figure 1, as the computation window slides from time T1 to T2,

62

Algorithm 1 Basic algorithm for sliding windows

Require: changes: △← (−δ1,+δ2)
1: /* Process new input +δ2 by running Map tasks*/
2: for i = Tend to Tend +(+δ2) do
3: Mi({k})← run_maptask(i);
4: end for
5: /* Propagate△ using contraction tree*/
6: for all keys k do
7: /* Delete Map outputs for −δ1*/
8: for i = Tstart to Tstart− (−δ1) do
9: contraction_tree·delete(Mi(k));

10: end for
11: /* Insert Map outputs for +δ2*/
12: for i = Tend to Tend +(+δ2) do
13: contraction_tree·insert(Mi(k)));
14: end for
15: /* Perform change propagation*/
16: contraction_tree·update(k);
17: end for
18: /* Adjust the window for the next incremental run*/
19: Tstart ← Tstart− (−δ1);
20: Tend ← Tend +(+δ2);

it invalidates the input of all Reduce tasks because of the removal
of the M0 output and the addition of new Map outputs (M5 & M6)
to the window. To address this limitation, we refine the strawman
design by organizing the second level nodes (corresponding to the
Reduce phase) into a contraction phase, which is interposed be-
tween the Map and the Reduce phase, and makes use of the data
structures proposed in this paper.

2.2 Adding the Contraction Phase

The idea behind the contraction phase is to break each Reduce task
into smaller sub-computations, which are structured in a contrac-

tion tree, and then propagate changes through this tree.
We construct the contraction tree by breaking up the work done

by the (potentially large) Reduce task into many applications of the
Combiner function. Combiner functions [24] were originally de-
signed to run at the Map task for saving bandwidth by doing a local
reduction of the output of Map, but instead we use Combiners at the
Reduce task to form the contraction tree. More specifically, we split
the Reduce input into small partitions (as depicted in Figure 1), and
apply the Combiner to pairs of partitions recursively in the form of
a binary tree until we have a single partition left. Finally, we apply
the Reduce function to the last Combiner, to get the final output.
This requires Combiner functions to be associative, an assumption
that is met by every Combiner function we have come across.

The final strawman design we obtain after adding the contraction
phase is shown in Algorithm 1. As a starting point, changes (△) in
the input are specified by the user as the union of old items (−δ)
that are dropped and new items (+δ) that are added to the window.
Subsequently,

1. the items that are added to the window (+δ) are handled by
breaking them up into fixed-sized chunks called “splits”, and
launching a new Map task to handle each split (line 1-4);

2. the outputs from these new Map tasks along with the old
splits that fall out from the sliding window (−δ) are then
fed to the contraction phase instead of the Reduce task for

each emitted key k (line 5-20);

3. finally, the computation time window is adjusted for the next
incremental run (line 18-20).

C3 C4

C’2 C5

C’1

0

C’0

0 1 2 3 4 5 6 7

C1C0

1 2 3

T1

(Initial run)

T2

(Incremental run)

4

C4C’3

5 6

T3

(Incremental run)

7

C2

C6

C’5

R1 R2
R3

T1

T2

T3

...

Add= 3

0 1 2 3 4 5

Add= 2, Remove=1

6 7

Add= 3, Remove=3

Void nodes

Non void nodes

Figure 2: Example of folding contraction tree

The remainder of the paper presents a set of novel data structures,
called self-adjusting contraction trees, that replace the simple bi-
nary tree in the strawman design of the contraction phase. The goal
of these data structures is to ensure that the path from the newly
added and dropped inputs to the root has a low depth, and that
as many unaffected sub-computations as possible are outside that
path. Furthermore, these data structures must perform a form of
rebalancing after each run, i.e., a change in the sliding window not
only triggers an update to the output but also to the structure of the
contraction tree, to ensure that the desirable properties of our data
structures hold for subsequent runs.

3 Self-Adjusting Contraction Trees

In this section, we present the general case data structures for incre-
mental sliding window analytics. When describing our algorithms,
we distinguish between two modes of running: an initial run and
an incremental run. The initial run assumes all input data items are
new and constructs the self-adjusting contraction tree from scratch.
The incremental run takes advantage of the constructed tree to in-
crementally update the output.

3.1 Folding Contraction Tree

Our first data structure, called a self-adjusting folding tree, permits
shrinking and extending the data window arbitrarily, i.e., supports
variable-width window slides. The goal of this data structure is to
maintain a small height for the tree, since this height determines
the minimum number of Combiner functions that need to be re-
computed when a single input changes.

Initial run. Given the outputs of the Map phase consisting of
M tasks, we construct a folding tree of height ⌈log2 M⌉ and pair
each leaf with the output of a Map task, such that all Map tasks
are mapped to a contiguous subset of the leaves with no unpaired
leaves in between. The leaf nodes that cannot be filled in the com-
plete binary tree (adding up to 2height− M nodes) are marked as
void nodes; these nodes will be occupied by future Map tasks. To
compute the output, we apply Reduce to the root of the folding tree.

Figure 2 illustrates an example. At time T1, we construct a com-
plete binary tree of height two, where the leaves are the Map out-
puts of {0,1,2}, and with an additional void node to make the num-
ber of leaves a power of two. We then apply combiners {C0,C1,C2}
to pairs of nodes to form a binary tree.

Incremental run. When the window slides, we want to keep the
folding tree balanced, meaning that the height of the tree should be

63

roughly be equal to logarithmic to the current window size (H =
⌈log2 M⌉), which is the minimum possible height. The basic idea is
to assign the outputs of new Map invocations to the void leaf nodes
on the right hand side of the tree, and mark the leaf nodes on the
left hand side corresponding to Map tasks that were dropped from
the window as void. Adding new nodes on the right hand side may
require a change in the tree size, when the new Map outputs exceed
the number of void nodes. Conversely, dropping nodes from the
left hand side can cause the entire left half of the tree to contain
void leaves. These are the two cases that lead to a change in the
height of the tree, and they are handled by folding and unfolding
units of complete (sub-)trees, i.e., increasing or decreasing the tree
height by one, while maintaining a complete tree.

In particular, when inserting items, we first try to fill up the void
nodes to the right of the non-void leaves that still have not been
used in the previous run. If all void nodes are used, a new complete
contraction tree is created, whose size is equal to the current tree,
and we merge the two trees. This increases the height of the tree
by one. When removing items, we always attempt to reduce the
tree height in order to make incremental processing more efficient
by checking if the entire left half of the leave nodes are void. If so,
we discard half of the tree by promoting the right hand child of the
root node to become the new root.

Figure 2 shows a set of example incremental runs for this algo-
rithm. At time T2, two Map outputs (nodes 3 & 4) are inserted,
causing the tree to expand to accommodate node 4 by constructing
another subtree of height two and joining the new subtree with the
previous tree, which increases the height to three. Conversely, at
time T3 the removal of three Map outputs (nodes 1, 2, & 3) causes
the tree height to decrease from three to two because all leaf nodes
in the left half of the tree are void.

3.2 Randomized Folding Tree

The general case algorithm performs quite well in the normal case
when the size of the window does not change drastically. How-
ever, the fact that tree expansion and contraction is done by dou-
bling or halving the tree size can lead to some corner cases where
the tree becomes imbalanced, meaning that its height is no longer
H = ⌈log2 M⌉. For example, if the window suddenly shrinks from a
large value of M elements to M′ = 2 elements, and the two remain-
ing elements happen to be on different sides with respect to the root
of the tree, then the algorithm ends up operating on a folding tree
with height ⌈log2(2M+1)⌉ when the window is of size M′ << M.

One way to address this problem is to perform an initial run
whenever the size of the window is more than some desired con-
stant factor (e.g., 8, 16) smaller than the number of leaves of the
folding tree. On rebalancing, all void nodes are garbage collected
and a freshly balanced folding tree is constructed (H = ⌈log2(M

′)⌉)
similar to the initial run. This strategy is attractive for workloads
where large variations in the window size are rare. Otherwise, fre-
quently performing the initial run for rebalancing can be inefficient.

For the case with frequent changes in the window size, we de-
signed a randomized algorithm for rebalancing the folding tree.
This algorithm is very similar to the one adopted in the design of
skip lists [36], and therefore inherits its analytical properties. The
idea is to group nodes at each level probabilistically instead of fold-
ing/unfolding complete binary trees. In particular, each node forms
a group boundary with a probability p = 1/2. In the expected case,
and by analogy to the skip list data structure, the average height of
the tree is H = ⌈log2(current_window_size)⌉.

Figure 3 shows an example of a randomized folding tree with 4
levels for 16 input leaf nodes. The tree is constructed by combining
nodes into groups, starting from left to right, where for each node a

C2

C6

C1C0

1 2 3 4

C11

R

5 60 9 10 11 12 13 14

C3 C4 C5

C7 C8

C9 C10
Recomputed

for deleted items

Level1

Level2

Level3

Level4

Delete

0 & 1
Insert

14 & 15

Recomputed

for

inserted items

Fresh execution

for

inserted items

7 8 15

Figure 3: Example of randomized folding tree

coin toss decides whether to form a group boundary: with probabil-
ity p = 1/2, a node either joins the previous group or creates a new
group. In the example, leaf nodes 0,1,2 join the same group C0,
and leaf node 3 creates a new group C1 which is joined by nodes
4,5,6. This process is repeated at all the levels. When nodes are
deleted, all nodes on paths from the deleted nodes to the root are
recomputed. In the example, after nodes 0 and 1 are deleted, node
C0,C6,C9,C11 are recomputed. Similarly, the newly inserted items
are grouped probabilistically at all the levels, and then the merged
nodes (combination of new and old nodes) are re-computed.

4 Split Processing Algorithms

We now consider two special cases of sliding windows, where, in
addition to offering specialized data structures, we also introduce a
split processing optimization. In the first special case, the window
can be extended on one end and reduced on the other, as long as the
size of the window remains the same (§4.1). (This is also known
as fixed-width window processing.) In the second case, the window
is only extended monotonically on one end by append operations
(§4.2). (This is also known as bulk-appended data processing.)

In both these cases, since we know more in advance about the
type of change that is going to take place in the next run, we lever-
age this fact for improving the responsiveness of incremental up-
dates by preparing for the incremental run before it starts. More
precisely, we split the change propagation algorithm into two parts:
a foreground processing and a background pre-processing. The
foreground processing takes place right after the update to the com-
putation window, and minimizes the processing time by combin-
ing new data with a pre-computed intermediate result. The back-
ground pre-processing takes place after the result is produced and
returned, paving the way for an efficient foreground processing
by pre-computing an intermediate result that will be used in the
next incremental update. The background pre-processing step is
optional and we envision performing it on a best-effort basis and
bypassing it if there are no spare cycles in the cluster.

4.1 Rotating Contraction Trees

In fixed-width sliding window computations, new data is appended
at the end, while the same amount of old data is dropped from the
beginning of the window, i.e., w new splits (each processed by a
new Map task) are appended and w old splits are removed. To
perform such computations efficiently, we use rotating contraction

trees (depicted in Figure 4). Here, w splits are grouped using the
combiner function to form what we call a bucket. Then, we form a
balanced binary contraction tree where the leaves are the buckets.

64

T1

R

C01

T2
T3

...

Window = 8, Slide = 2

0 1 2 3 4 5

C

C00

C0

C10 C11

C1

Update path

for bucket # 0

B0 B1 B2 B3

(a) foreground only mode

C01C00

I0

C10 C11

C1

Split processing

for bucket # 0

B0 B1 B2 B3

R

C Background

pre-processing

Foreground

processing

no-processing

(b) w/ background mode

Figure 4: Example of rotating contraction trees

Since the number of buckets remains constant when the window
slides, we just need to rotate over the leaves in a round-robin fash-
ion, replacing the oldest bucket with the newly produced one.

Initial run. In this case, the steady state of incremental runs is only
reached when the window fills up. As such, we need to consider the
sequence of initial runs during which no buckets are dropped. At
each of these runs, we combine the w newly produced Map outputs
to produce a new bucket. By the time the first window fills, we con-
struct the contraction tree by combining all bucket outputs in pairs
hierarchically, to form a balanced binary tree of height ⌈log2(N)⌉,
where N is the total number of buckets in a window. Figure 4(a)
shows an example with w = 2 and N = 4. At T1, the first level of
the tree (C00, C01, C10, C11) is constructed by invoking combiners
on the N buckets of size w = 2, whose results are then recursively
combined to form a balanced binary tree. The output of the com-
biner at the root of the tree is then used as input to the Reduce task.

Incremental run. We organize the leaf nodes of the contraction
tree as a circular list. When w new splits arrive and w old splits are
removed from the data set, we replace the oldest bucket with the
new bucket and update the output by recomputing the path affected
by the new bucket. Figure 4(a) shows an example. At T2 the new
bucket 4 replaces the oldest bucket 0. This triggers a propagation
of this change all the way to the root, where each step combines a
memoized combiner output with a newly produced combiner out-
put. In this example, we reuse the memoized outputs of combiners
C01, and C1. In total, this requires recomputing a number of com-
biners that is equal to log(N). The rotation of buckets requires
commutativity in addition to the associativity of the combiner in-

T1
T2

T3

C1

C’2

C’3

...

C3

R1

R2

R3

C2

(a) foreground only mode

T1
T2

T3

C1
C’2

C’3

...

C3

R1

R2

R3

C2
Background

pre-processing

Foreground

processing

(b) w/ background mode

Figure 5: Example of coalescing contraction trees

vocations. Both properties were held by Combiner functions in the
applications we analyzed.

Background pre-processing. As explained before, this background
step anticipates part of the processing since in this case we can pre-
dict the window change that will take place. In particular, in this
case we know exactly what are the subtrees of the next incremental
run whose outputs will be reused – these are the subtrees that fall
outside the path from the next bucket to be replaced to the root. We
take advantage of this by pre-combining all the combiner outputs
that are at the root of those subtrees. For example, in Figure 4(b),
we can pre-compute the combiner output I0 by combining C01 and
C1 along the update path of bucket 0 in the background. This way,
the incremental run only needs to invoke the Reduce task with the
output of this pre-computed Combiner invocation (I0) and the out-
puts of the newly run Map tasks.

4.2 Coalescing Contraction Trees

In the append only variant, the window grows monotonically as the
new inputs are appended at the end of the current window, i.e., old
data is never dropped. For this kind of workflow we designed a data
structure called a coalescing contraction tree (depicted in Figure 5).

Initial run. The first time input data is added, a single-level con-
traction tree is constructed by executing the Combiner function (C1

in Figure 5(a)) for all Map outputs. The output of this combiner
is then used as input to the Reduce task, which produces the final
output (R1 in Figure 5(a)).

Incremental run. The outputs of the new Map tasks (C′2 in Fig-
ure 5(a)) are combined, and the result is combined with the output
of the contraction tree from the previous run to form a new contrac-
tion tree (C2 combines the outputs of C1 and C′2). The output of the
root of this new tree is then provided to a Reduce task (R2 in the
example), which produces the new output.

Background pre-processing. In the foreground processing step
(see Figure 5(b)) the new output is computed directly by invoking

65

the Reduce task on the root of the old contraction tree and on the
output of a Combiner invocation on the new Map inputs. In the
background pre-processing phase, we prepare for the next incre-
mental run by forming a new root of the contraction tree to be used
with the next new input data. This is done by combining the root
of the old tree with the output of the previous Combiner invoca-
tion on the new Map inputs. Figure 5(b) depicts an example for
background pre-processing. We perform the final reduction (R2)
directly on the union of the outputs of the combiner invocation
from the previous run (C1), and the combiner invocation, which
aggregates the outputs of the newly run Map tasks (C′2). In the
background, we run the new combiner that will be used in the next
incremental run (C2), using the same inputs as the Reduce task, to
anticipate the processing that will be necessary in the next run.

5 Query Processing: Multi-Level Trees

We next present an extension of self-adjusting contraction trees to
integrate them with tools that support declarative data-flow query
languages, such as Pig [20] or DryadLINQ [29]. These languages
have gained popularity in the context of large-scale data analysis
due to the ease of programming using their high-level primitives.
To support these systems, we leverage the observation that pro-
grams written in these query languages are compiled to a series of
pipelined stages where each stage corresponds to a program in a
traditional data-parallel model (such as MapReduce or Dryad), for
which we already have incremental processing support.

In particular, our query processing interface is based on Pig [20].
Pig consists of a high-level language (called Pig-Latin) similar to
SQL, and a compiler that translates Pig programs to a workflow of
multiple pipelined MapReduce jobs. Since our approach handles
MapReduce programs transparently, each stage resulting from this
compilation can run incrementally by leveraging contraction trees.
A challenge, however, is that not all the stages in this pipeline are
amenable to a sliding window incremental computation. In partic-
ular, after the first stage MapReduce job that processes the input
from the sliding window, changes to the input of subsequent stages
could be at arbitrary positions instead of the window ends. Thus,
we adapt the strategy we employ at different stages as follows: (1)
in the first stage, we use the appropriate self-adjusting contraction
tree that corresponds to the desired type of window change; and, (2)
from the second stage onwards in the pipeline, we use the strawman
contraction tree (§2) to detect and propagate changes.

6 Slider Architecture & Implementation

We implemented self-adjusting contraction trees in a system called
Slider, which is based on Hadoop-0.20.2. Our data structures are
implemented by inserting an additional Contraction phase between
the shuffle stage and the sort stage. To prevent unnecessary data
movement in the cluster, the new Contraction phase runs on the
same machine as the Reduce task that will subsequently process the
data. An overview of the implementation is depicted in Figure 6.
We next present some of its key components.

In-memory distributed cache. The implementation includes an
in-memory distributed data caching layer to provide fast access to
memoized results. The use of in-memory caching is motivated by
two observations: first, the number of sub-computations that need
to be memoized is limited by the size of the sliding window; sec-
ond, main memory is generally underutilized in data-centric com-
puting, thus creating an opportunity for reusing this resource [13].
We designed a simple distributed caching service that memoizes
the outputs of sub-computations. The distributed cache is coordi-
nated by a master node (in our case, the namenode of Hadoop),
which maintains an index to locate the data items.

Master

Slave-1

Fault-tolerant memoization layer

 In-memory

memoization

cache

Slave-1 disk

Slave-2

 In-memory

memoization

cache

Slave-2 disk

...

...

Slave-N

 In-memory

memoization

cache

Slave-N disk

Index for objects

Get/Put

Delete

Cache

replacement

policy

Scheduler

Garbage

collector

Memoization

deletion

policy

Shim I/O layer

Figure 6: Slider architecture

Fault-tolerance. Storing memoized results in the in-memory data
cache is beneficial for performance, but it can lead to reduced mem-
oization effectiveness when machines fail, as the loss of memo-
ized results will trigger otherwise unnecessary recomputations. To
avoid this situation, we built a fault-tolerant memoization layer,
which, in addition to storing memoized data in the in-memory cache,
creates two replicas of this data in persistent storage. The repli-
cation is transparently handled by a shim I/O layer that provides
low-latency access to the in-memory cache when possible and falls
back to the persistent copies when necessary.

Garbage collection. To ensure that the storage requirements re-
main bounded, we developed a garbage collector (implemented at
the master node) that manages the space used by the memoization
layer. The garbage collector can either automatically free the stor-
age occupied by data items that fall out of the current window, or
have a more aggressive user-defined policy.

Memoization-aware scheduling. The original Hadoop scheduler
takes into account the input data locality only when scheduling Map
tasks, but chooses the first available machine to run a pending Re-
duce task (without considering any data locality). Slider modifies
the original scheduler from Hadoop, based on previous work in
data-locality scheduling [10], to schedule Reduce tasks where the
previously run objects are memoized.

Straggler mitigation for incremental computation. A limitation
of a strict memoization-aware scheduling policy is that it can be-
come inefficient in the presence of straggler tasks, i.e., tasks that
are slowed down, e.g., due to a high load on the machine where
they execute [42]. This is because the scheduler can be left waiting
for one of these tasks to complete in order to schedule a new task
on its preferred location. To overcome the straggler effect while
still exploiting the locality of memoized data, we designed a sim-
ple hybrid scheduling scheme that first tries to exploit the locality
of memoized data, and, when the execution of a node is detected to
be slow, dynamically migrates tasks from the slow node to another
node. In the case of a migration, the memoized data is fetched over
the network by the new node where the task is scheduled.

7 Evaluation

Our evaluation answers the following questions:

• How does the perfomance of Slider compare to recomputing
over the entire window of data and with the memoization-
based strawman approach? (§ 7.2)

66

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(a) Work – Append-only (A)

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(b) Work – Fixed-width (F)

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(c) Work – Variable-width (V)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(d) Time – Append-only (A)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(e) Time – Fixed-width (F)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(f) Time – Variable-width (V)

Figure 7: Performance gains of Slider compared to recomputing from scratch

• How effective are the optimizations we propose in improving
the performance of Slider? (§ 7.3)

• What are the overheads imposed during a fresh run of an
application? (§ 7.4)

7.1 Experimental Setup

Applications and dataset. Our micro-benchmarks span five Map-
Reduce applications that implement typical data analysis tasks. Two
are compute-intensive applications: K-means clustering (K-Means),
and K-nearest neighbors (KNN). As input to these tasks we use
synthetically generated data by randomly selecting points from a
50-dimensional unit cube. The remaining three are data-intensive
applications: a histogram-based computation (HCT), a co-occur-
rence matrix computation (Matrix), and a string computation ex-
tracting frequently occurring sub-strings (subStr). As input we use
a publicly available dataset of Wikipedia [7].

Cluster setup. Our experiments run on a cluster of 25 machines.
We configured Hadoop to run the namenode and the job tracker on
a master machine, which was equipped with a 12-core Intel Xeon
processor and 48 GB of RAM. The data nodes and task trackers
ran on the remaining 24 machines equipped with AMD Opteron-
252 processors, 4 GB of RAM, and 225 GB drives.

Measurements. We consider two types of measures: work and
run-time (or time). Work refers to the total amount of computation
performed by all tasks (Map, contraction, and Reduce) and is mea-
sured as the sum of the active time for all the tasks. Time refers to
the (end-to-end) total amount of running time to complete the job.

Methodology. To assess the effectiveness of Slider, we measured
the work and run-time of each micro-benchmark for different dy-
namic update scenarios, i.e., with different amounts of modified
inputs, ranging from 5% to 25% of input data change. For the
append-only case, a p% incremental change of the input data means
that p% more data was appended to the existing data. For the

fixed-width and variable-width sliding window cases, the window
is moved such that p% of the input buckets are dropped from the
window’s beginning, and replaced with the same number of new
buckets containing new content appended to the window’s end.

7.2 Performance Gains

Speedups w.r.t. recomputing from scratch. We first present the
performance gains of Slider in comparison with recomputing from
scratch. For the comparison, we compared the work and run-time
of Slider to an unmodified Hadoop implementation. Figure 7 shows
that the gains for compute-intensive applications (K-Means and
KNN) are the most substantial, with time and work speedups be-
tween 1.5 and 35-fold. As expected, the speedup decreases as the
overlap between the old and the new window becomes smaller.
Nonetheless, for these two benchmarks, even for a 25% input chan-
ge, the speedup is still between 1.5 and 8-fold depending on the
application. Speedups for data-intensive applications (HCT, Ma-
trix, and subStr) are between 1.5-fold and 8-fold. Despite these
also being positive results, the speedup figures are lower than in
the case of applications with a higher ratio of computation to I/O.
This is because the basic approach of memoizing the outputs of
previously run sub-computations is effective at avoiding the CPU
overheads but still requires some data movement to transfer the out-
puts of sub-computations, even if they were memoized. The per-
formance gains for variable-width sliding windows are lower than
for the append-only and fixed-width window cases because updates
require rebalancing the tree, and thus incur a higher overhead.

Performance breakdown. Figure 9(a) and Figure 9(b) show the
normalized execution time breakdown in the incremental run with
5% and 25% changes in the input, respectively. The Map and Re-
duce contributions to the total time for the baseline vanilla Hadoop
are shown in the bar labelled “H”. The “H” bar breakdown shows
that the compute-intensive applications (Kmeans and KNN) per-
form around 98% of the work in the Map phase, whereas the other

67

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(a) Work – Append-only (A)

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(b) Work – Fixed-width (F)

 2

 2.5

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(c) Work – Variable-width (V)

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(d) Time – Append-only (A)

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(e) Time – Fixed-width (F)

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25

S
p
e
e
d
u
p

Incremental change of input (%)

HCT
subStr

Matrix
 K-Means

KNN

(f) Time – Variable-width (V)

Figure 8: Performance gains of Slider compared to the memoization based approach (the strawman design)

applications (HCT, Matrix, and SubStr) perform roughly the same
amount of work in each phase.

The same figures also show the breakdown for all three modes
of operation (“A” for Append, “F” for Fixed-width, and “V” for
Variable-width windowing), where the Slider-Map and Slider-con-
traction + Reduce portions in these bars represent the execution
time computed as a percentage of the baseline Hadoop-Map and
Hadoop-Reduce (H) times, respectively. In other words, the per-
centage execution time for Slider-Map is normalized to Hadoop-
Map, while the percentage execution time for Slider-contraction +
Reduce is normalized to Hadoop-Reduce.

For the Map phase of Slider, the breakdown shows that the per-
centage of Map work (compared to the non-incremental baseline)
in the incremental run is proportional to the input change, as ex-
pected. In contrast, the work done by the Reduce phase is less af-
fected by the amount of input change. In particular, the contraction
+ Reduce phase execution averages 31% of the baseline Reduce
execution time (min: 18.39%, max: 59.52%) for 5% change, and
averaged 43% (min: 26.39%, max: 80.95%) for 25% change across
all three modes of operation.

Speedups w.r.t. memoization (strawman approach). Figure 8
presents the work and time speedup of Slider w.r.t. the memoization-
based strawman approach (as presented in Section 2). The process-
ing performed in the Map phase is the same in both approaches, so
the difference lies only in the use of self-adjusting contraction trees
instead of the strawman contraction tree. The work gains range
from 2X to 4X and time gains range from 1.3X to 3.7X for dif-
ferent modes of operation with changes ranging from 25% to 5%
of the input size. The work speedups for the compute-intensive
applications (Kmeans and KNN) decrease faster than other appli-
cations as the input change increases because most performance
gains were due to savings in the Map phase. Overall, although less
pronounced than in the comparison to recomputing from scratch,
the results show considerable speedups due to the data structures

that are specific to each type of sliding window processing, when
compared to the strawman approach.

7.3 Effectiveness of Optimizations

We now evaluate the effectiveness of the individual optimizations
in improving the overall performance.

Split processing. Slider is designed to take advantage of the pre-
dictability of future updates by splitting the work between back-
ground and foreground processing. To evaluate the effectiveness in
terms of latency savings from splitting the execution, we compared
the cost of executing with and without it, for both the append-only
and the fixed-width window categories. Figures 11(a) and 11(b)
show the time required for background preprocessing and fore-
ground processing, normalized to the total time (total update time
= 1) for processing the update without any split processing. Fig-
ure 11(a) shows this cost when a new input with 5% of the origi-
nal input size is appended, for different benchmarking applications,
whereas Figure 11(b) shows the same cost for a 5% input change in
the fixed-width window model. The results show that with the split
processing model, we are on average able to perform foreground
updates up to 25%-40% faster, while offloading around 36%-60%
of the work to background pre-processing.

The results also show that the sum of the cost of background pre-
processing and foreground processing exceeds the normal update
time (total update time = 1) because of the extra merge operation
performed in the split processing model. Our results show that the
additional CPU usage for the append-only case is in the range of
1% to 23%, and 6% to 36% for the fixed-window processing.

Scheduler modification. Table 1 shows the effectiveness of our
hybrid scheduler in improving the performance of Slider compared
to the scheduler of Hadoop (normalized to 1 as the baseline). The
new scheduler saves on average 23% of run-time for data-intensive
applications, and 12% of time for compute intensive applications.

68

 0

 50

 100

HAFV HAFV HAFV HAFV HAFV

W
o
rk

 b
re

a
k
d
o
w

n
 (

%
)

K-Means HCT KNN Matrix subStr

H- Hadoop
A - Append
F - Fix
V - Variable

Slider Contraction + Reduce

Slider Map

Hadoop Reduce

Hadoop Map

(a) For 5% change in the input

 0

 50

 100

HAFV HAFV HAFV HAFV HAFV

W
o
rk

 b
re

a
k
d
o
w

n
 (

%
)

K-Means HCT KNN Matrix subStr

H- Hadoop
A - Append
F - Fix
V - Variable

Slider Contraction + Reduce

Slider Map

Hadoop Reduce

Hadoop Map

(b) For 25% change in the input

Figure 9: Performance breakdown for work

 0

 2

 4

 6

 8

 10

 12

Work Time

S
p
e
e
d
u
p

PigMix scalability benchmark

Append Fixed Variable

Figure 10: Query processing

 0

 0.2

 0.4

 0.6

 0.8

 1

K-Means HCT KNN Matrix subStrR
e
d
u
c
e
 N

o
rm

a
liz

e
d
 =

 1

Microbenchmark Applications

Background preprocessing

Foreground processing

Normalized update time

(a) Append-only case

 0

 0.2

 0.4

 0.6

 0.8

 1

K-Means HCT KNN Matrix subStrR
e
d
u
c
e
 N

o
rm

a
liz

e
d
 =

 1

Microbenchmark Applications

Background preprocessing

Foreground processing

Normalized update time

(b) Fixed-width case

Figure 11: Effectiveness of Split processing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

K-Means Matrix

S
p
e
e
d
u
p

25% remove 1% add

50% remove 1% add

 Folding tree

Figure 12: Randomized folding tree

K-Means HCT KNN Matrix subStr

0.94 0.72 0.82 0.83 0.76

Table 1: Normalized run-time for Slider scheduler with respect

to Hadoop scheduler (run-time = 1).

These results show that scheduling tasks on the machines where
memoized results are stored lead to improved performance.

Data-flow query interface. To demonstrate the potential of in-
cremental query-based sliding-window computations, we evaluate
Slider using the PigMix [2] benchmark, which generates a long
pipeline of MapReduce jobs derived from Pig Latin query scripts.
We ran the benchmark in our three modes of operation with changes
to 5% of its input. Figure 10 shows the resulting run-time and work
speedups. As expected, the results are in line with the previous
evaluation, since ultimately the queries are compiled to a set of
MapReduce analyses. We observe an average speedup of 2.5X and
11X for time and work, respectively.

In-memory distributed memoization caching. For evaluating the
effectiveness of performing in-memory data caching, we compared
our performance gains with and without this caching support. In
particular, we disabled the in-memory caching support from the
shim I/O layer, and instead used the fault-tolerant memoization
layer for storing the memoized results. Therefore, when accessing
the fault-tolerant memoization layer, we incur an additional cost of
fetching the data from the disk or network. Table 2 shows reduction
in the time for reading the memoized state with in-memory caching
for fixed-width windowing. This shows that we can achieve 50%
to 68% savings in the read time by using the in-memory caching.

Randomized folding tree. To evaluate the effectiveness of the ran-
domized folding tree, we compared the gains of the randomized
version with the normal folding tree (see Figure 12). We compare
the performance for two update scenarios: reducing the window

K-Means HCT KNN Matrix subStr

48.68% 56.87% 53.19% 67.56% 66.2%

Table 2: Reduction in the time for reading the memoized state

with in-memory caching.

size by two different amounts (25% and 50%) and, in both cases,
performing a small update adding 1% of new items to the window.
We report work speedups for two applications (K-Means and Ma-
trix), representing both compute and data-intensive applications.

The experiments show that a large imbalance (of 50% removals
to 1% additions) is required for the randomized data structure to
be beneficial. In this case, the randomized version leads to a per-
formance improvement ranging from 15% to 22%. This is due to
the fact that decreasing the window size by half also reduces the
height of the randomized folding tree by one when compared to
the original version (leading to more efficient updates). In contrast,
with 25% removals to the same 1% additions the standard folding
tree still operates at the same height as the randomized folding tree,
which leads to a similar, but slightly better performance compared
to the randomized structure.

7.4 Overheads

Slider adds two types of overhead. First, the performance over-

head for the initial run (a one time cost only). Second, the space

overhead for memoizing intermediate results.

Performance overheads. Figure 13(a) and Figure 13(b) show the
work and time overheads for the initial run, respectively. Compute-
intensive applications (K-means & KNN) show low overhead as their
run-time is dominated by the actual processing time and are less
affected by the overhead of storing intermediate nodes of the tree.
For data-intensive applications, the run-time overhead is higher be-
cause of the I/O costs for memoizing the intermediate results.

The overheads for the variable-width variant are higher than those

69

 0

 10

 20

 30

 40

 50

 60

 70

 80

K-Means HCT KNN Matrix subStr

W
o
rk

 o
v
e
rh

e
a
d
 (

%
)

Microbenchmark applications

Append-only

Fixed-width

Variable-width

(a) Work overhead

 0

 10

 20

 30

 40

 50

 60

 70

 80

K-Means HCT KNN Matrix subStr

T
im

e
 o

v
e
rh

e
a
d
 (

%
)

Microbenchmark applications

Append-only

Fixed-width

Variable-width

(b) Time overhead

 0

 2

 4

 6

 8

 10

 12

K-Means HCT KNN Matrix subStr

S
p
a
c
e
 o

v
e
rh

e
a
d
 (

fa
c
to

r
o
f)

Microbenchmark applications

Append-only

Fixed-width

Variable-width

< 0.008 < 0.001

(c) Space overhead

Figure 13: Overheads of Slider for the initial run

for fixed-width computations, and significantly higher than the ap-
pend case. This additional overhead comes from having more lev-
els in the corresponding self-adjusting contraction tree.

Space overhead. Figure 13(c) plots the space overhead normalized
by the input size. Again, the variable-width sliding-window com-
putation shows the highest overhead, requiring more space than the
other computations, for the same reasons that were mentioned in
the case of the performance overheads. Space overhead highly de-
pends on the application. Matrix has the highest space overhead of
12X, while K-Means and KNN have almost no space overhead.

The results show that the overheads, despite being visible, are a
one-time cost likely to be worth paying in workloads where the ini-
tial run is followed by many incremental runs that reap the benefit
of incremental computations. Furthermore, the garbage collection
policy can further limit the space overheads.

8 Real-world Case Studies

We used Slider to evaluate three real-world case studies covering
all three operation modes for sliding windows. Our case studies
include: (i) building an information propagation tree [38] for Twit-
ter for append-only windowing; (ii) monitoring Glasnost [26] mea-
surement servers for detecting ISPs traffic differentiation for fixed-
width windowing; and (iii) providing peer accountability in Aka-
mai NetSession [12], a hybrid CDN for variable-width windowing.

8.1 Information Propagation in Twitter

Analyzing information propagation in online social networks is an
active area of research. We used Slider to analyze how web links
are spread in Twitter, repeating an analysis done in [38].

Implementation. The URL propagation in Twitter is tracked by
building an information propagation tree for posted URL based on
Krackhardt’s hierarchical model. This tree tracks URL propagation
by maintaining a directed edge between a spreader of a URL and a
receiver, i.e., a user “following” the account that posted the link.

Dataset. We used the complete Twitter snapshot data from [38],
which comprises 54 million users, 1.9 billion follow-relations, and
all 1.7 billion tweets posted by Twitter users between March 2006
and September 2009. To create a workload where data is grad-
ually appended to the input, we partitioned the dataset into five
non-overlapping time intervals as listed in Table 4. The first time
interval captures all tweets from the inception of Twitter up to June
2009. We then add one week worth of tweets for each of the four
remaining time intervals. For each of these intervals, an average
cumulative change of 5% was performed with every new append.

Performance gains. We present the performance gains of incre-
mentally building the information propagation tree using Slider in

Time interval
Mar’06

Jun’09

Jul’09

1-7

Jul’09

8-14

Jul’09

15-21

Jul’09

22-28

Tweets (M) 1464.3 74.2 81.5 79.4 85.6

Change - 5.1% 5.3% 4.9 % 5.0%

Time speedup - 8.9 9.2 9.42 9.25

Work speedup - 14.22 13.67 14.22 14.34

Table 4: Summary of the Twitter data analysis

Table 4. The speedups are almost constant for the four time in-
tervals, at about 8X for run-time and about 14X for work. The
run-time overhead for computing over the initial interval is 22%.

8.2 Monitoring of a Networked System

Glasnost [26] is a system that enables users to detect whether their
broadband traffic is shaped by their ISP. The Glasnost system tries
to direct users to a nearby measurement server. Slider enabled us
to evaluate the effectiveness of this server selection.

Implementation. For each Glasnost test run, a packet trace of the
measurement traffic between the measurement server and the user’s
host is stored. We used this trace to compute the minimum round-
trip time (RTT) between the server and the user’s host, which rep-
resents the distance between the two. Taking all minimum RTT
measurements of a specific measurement server, we computed the
median across all users that were directed to this server.

Dataset. For this analysis, we used the data collected by one Glas-
nost server between January and November 2011 (see Table 3). We
started with the data collected from January to March 2011. Then,
we added the data of one subsequent month at a time and computed
the mean distance between users and the measurement server for a
window of the most recent 3 months. This particular measurement
server had between 4,033 and 6,536 test runs per 3-month interval,
which translate to 7.8 GB to 18 GB of data per interval.

Performance gains. We measured both work and time speedups as
shown in Table 3. The results show that we get an average speedup
on the order of 2.5X , with small overheads of less than 5%.

8.3 Accountability in Hybrid CDNs

Content distribution networks (CDN) operators like Akamai re-
cently started deploying hybrid CDNs, which employ P2P tech-
nology to add end user nodes to the distribution network, thereby
cutting costs as fewer servers need to be deployed. However, this
also raises questions about the integrity of the answers that are pro-
vided by these untrusted clients [12].

Implementation. Aditya et al. [12] presented a design of a hybrid
CDN that employs a tamper-evident log to provide client account-
ability. This log is uploaded to a set of servers that need to audit

70

Year 2011 Jan-Mar Feb-Apr Mar-May Apr-Jun May-Jul Jun-Aug Jul-Sep Aug-Oct Sep-Nov

No. of pcap files 4033 4862 5627 5358 4715 4325 4384 4777 6536

Window change size 4033 1976 1941 1441 1333 1551 1500 1726 3310

% change size 100 % 40.65 % 34.50 % 26.89 % 28.27 % 35.86 % 34.22 % 36.13 % 50.64 %

Time speedup - 2.07 2.8 3.79 3.32 2.44 2.56 2.43 1.9

Work speedup - 2.13 2.9 4.12 3.37 3.15 2.93 2.46 1.91

Table 3: Summary of the Glasnost network monitoring data analysis

% clients online to

upload logs
100% 95% 90% 85% 80% 75%

Time speedup 1.72 1.85 1.89 2.01 2.1 2.24

Work speedup 2.07 2.21 2.29 2.44 2.58 2.74

Table 5: Akamai NetSession data analysis summary

the log periodically using techniques based on PeerReview. Us-
ing Slider, we implemented these audits as a variable-sized sliding-
window computation, where the amount of data in a window varies
depending on the availability of the clients to upload their logs to
the central infrastructure in the hybrid CDN.

Dataset. To evaluate the effectiveness of Slider, we used a syn-
thetic dataset generated using trace parameters available from Aka-
mai’s NetSession system, a peer-assisted CDN operated by Aka-
mai (which currently has 24 million clients). From this data set,
we selected the data collected in December 2010. However, due to
the limited compute capacity of our experimental setup, we scaled
down the data logs to 100,000 clients. In addition to this input, we
also generated logs corresponding to one week of activity with a
varying percentage of clients (from 100% to 75%) uploading their
logs to the central infrastructure, so that the input size varies across
weeks. This allows us to create an analysis with a variable-width
sliding window by using a window corresponding to one month of
data and sliding it by one week in each run.

Performance gains. Table 5 plots the performance gains for log
audits for a different percentage of client log uploads for the 5th
week. We observe a speedup of 2X to 2.5X for a fraction of clients
uploading the log in the final week that varied from 75% to 100%.
Similarly, the run-time speedups are between 1.5X and 2X .

9 Related Work

We compare our work to two major classes of systems that are suit-
able for sliding window analytics: trigger-based windowing sys-
tems, and batch-based windowing systems. We conclude with a
broader comparison to incremental computation mechanisms.

Trigger-based windowing systems. These systems follow record-

at-a-time processing model, where every new data entry triggers a
state change and possibly produces new results, while the applica-
tion logic, known as a standing query, may run indefinitely. This
query can be translated into a network with stateless and/or state-
ful nodes. A stateful node updates its internal state when process-
ing incoming records, and emits new records based on that state.
Examples of such systems include Storm [5], S4 [3], StreamIn-
sight [31], Naiad [33], Percolator [34], Photon [14], and streaming
databases [15]. Despite achieving low latency, these systems also
raise challenges [41]:

(1) Fault-tolerance: To handle faults, these systems either rely on
replication with synchronization protocols such as Flux [39] or Bo-
realis’s DPC [15], which have a high overhead, or on checkpointing
upstream backup mechanisms, which have a high recovery time. In
addition, neither fault tolerance approach handles stragglers.

(2) Semantics: In a trigger-based system, it can be difficult to rea-

son about global state, as different nodes might be processing dif-
ferent updates at different times. This fact, coupled with faults, can
lead to weaker semantics. For instance, S4 provides at most once
semantics, and Storm [5] provides at-least-once semantics.
(3) Programming model: The record-at-a-time programming model
in trigger-based systems requires the users to manage the interme-
diate state and wire the query network topology manually. Further-
more, programmers need to understand how to update the output of
each node in the query network as its input evolves. The design of
the update logic is further complicated by the weak semantics pro-
vided by the underlying platform. While supporting incremental
computation for aggregate operations is straightforward, this can
be very challenging for non-trivial computations like matrix opera-
tions or temporal joins [40, 6].

Batch-based windowing systems. These systems model sliding
window analytics as a series of deterministic batch computations on
small time intervals. Such systems have been implemented both on
top of trigger-based systems (e.g., Trident [6] built over Storm [5]
or TimeStream [40] built over StreamInsight [31]) and systems
originally designed for batch processing (e.g., D-Streams [41] built
over Spark [32] or MapReduce online [23] and NOVA [21] built
over MapReduce [24]). These systems divide each application into
a graph of short, deterministic tasks. This enables simple yet effi-
cient fault recovery using recomputation and speculative execution
to handle stragglers [42]. In terms of consistency, these systems
trivially provide “exactly-once” semantics, as they yield the same
output regardless of failures. Finally, the programming model is
the same as the one used by traditional batch processing systems.

We build on this line of research, but we observe that these sys-
tems are not geared towards incremental sliding window computa-
tion. Most systems recompute over the entire window from scratch,
even if there is overlap between two consecutive windows. The
systems that allow for an incremental approach require an inverse
function to exist [41], which may not be trivial to devise for com-
plex computations. In this work, we address these limitations in
batch-based windowing systems by proposing a transparent solu-
tion for incremental sliding window analytics.

Incremental Computation. While there exists some prior work
on enabling incremental computations in batch processing systems,
this work did not leverage the particular characteristics of sliding
windows, among other important differences. In more detail, in-
cremental computation in batched processing systems such as In-
coop [17, 18], Haloop [19], Nectar [27], DryadInc [35] requires lin-
ear time in the size of the input data, even to process a small slide in
the window. The reasons for this are twofold: Firstly, these systems
assume that inputs of consecutive runs are stored in separate files
and simply compute their diffs to identify the input changes. The
change detection mechanism relies on techniques such as content-
based chunking (as in Incoop using IncHDFS [18]), which requires
performing linear work in the size of the input [16]. In contrast,
sliding window computation provides diffs naturally, which can be
leveraged to overcome the bottleneck of identifying changes. Sec-
ond, and more importantly, these systems do not perform change
propagation, relying instead on memoization to recover previously

71

computed results. Consequently, they require visiting all tasks in a
computation even if the task is not affected by the modified data,
i.e. the delta, thus requiring an overall linear time. In contrast,
this paper proposes an approach that only requires time that is lin-
ear in the delta, and not the entire window, and we propose new
techniques that are specific to sliding window computation.

10 Conclusions

In this paper, we presented self-adjusting contraction trees for in-
cremental sliding window analytics. The idea behind our approach
is to structure distributed data-parallel computations in the form of
balanced trees that can perform updates in asymptotically sublinear
time, thus much more efficiently than recomputing from scratch.
We present several algorithms and data structures for supporting
this type of computation, describe the design and implementation
of Slider, a system that uses our algorithms, and present an exten-
sive evaluation showing that Slider is effective on a broad range of
applications. This shows that our approach provide significant ben-
efit for sliding window analytics, without requiring the programmer
to write the logic for handling updates.

Asymptotic analysis. The asymptotic efficiency analysis of self-
adjusting contraction trees is available online [4].

Acknowledgements

We are thankful to Paarijaat Aditya, Marcel Dischinger, and Far-
shad Kooti for helping us with the evaluation of the case studies.
We also thank Ashok Anand, Haibo Chen, Rose Hoberman, Kostas
Kloudas, Dionysios Logothetis, Sue Moon, Malte Schwarzkopf,
and the SysNets group members at MPI-SWS and MSR Cambridge
for the valuable feedback on this work. The research of Rodrigo
Rodrigues is supported by the European Research Council under an
ERC starting grant. Computing resources for this work were sup-
ported by an Amazon Web Services (AWS) Education Grant. The
research of Umut Acar is partially supported by the European Re-
search Council under grant number ERC-2012-StG-308246 and the
National Science Foundation under grant number CCF-1320563.

References

[1] Apache Hadoop: http://hadoop.apache.org.
[2] Apache PigMix: http://wiki.apache.org/pig/PigMix.
[3] Apache S4: http://incubator.apache.org/s4.
[4] Asymptotic analysis of self-adjusting contraction trees:

http://www.mpi-sws.org/~bhatotia/publications.
[5] Storm: http://storm-project.net.
[6] Trident: http://storm.incubator.apache.org/.
[7] Wikipedia dataset: http://wiki.dbpedia.org.
[8] U. A. Acar. Self-Adjusting Computation. PhD thesis,

Carnegie Mellon University, 2005.
[9] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and

K. Tangwongsan. An experimental analysis of self-adjusting
computation. ACM TOPLAS, 2009.

[10] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The Data
Locality of Work Stealing. In SPAA, 2000.

[11] U. A. Acar, G. E. Blelloch, R. Ley-Wild, K. Tangwongsan,
and D. Türkoğlu. Traceable data types for self-adjusting com-
putation. In ACM PLDI, 2010.

[12] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel,
B. Maggs, and B. Wishon. Reliable Client Accounting for
P2P-Infrastructure Hybrids. In NSDI, 2012.

[13] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Shenker, and I. Stoica. PACMan: Coordinated Memory
Caching for Parallel Jobs. In NSDI, 2012.

[14] Ananthanarayanan et al. Photon: Fault-tolerant and Scalable
Joining of Continuous Data Streams. In SIGMOD, 2013.

[15] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stone-

braker. Fault-Tolerance in the Borealis Distributed Stream
Processing System. In SIGMOD, 2005.

[16] P. Bhatotia, R. Rodrigues, and A. Verma. Shredder: GPU-
Accelerated Incremental Storage and Computation. In FAST,
2012.

[17] P. Bhatotia, A. Wieder, I. E. Akkus, R. Rodrigues, and U. A.
Acar. Large-scale incremental data processing with change
propagation. In HotCloud, 2011.

[18] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquini. Incoop: MapReduce for Incremental Compu-
tations. In SoCC, 2011.

[19] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop:
Efficient Iterative Data Processing on Large Clusters. In
VLDB, 2010.

[20] C. Olston et al. Pig Latin: A Not-So-Foreign Language for
Data Processing. In SIGMOD, 2008.

[21] C. Olston et al. Nova: Continuous Pig/Hadoop Workflows. In
SIGMOD, 2011.

[22] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in com-
putational geometry. Proceedings of the IEEE, 1992.

[23] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online. In NSDI,
2010.

[24] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In OSDI, 2004.

[25] C. Demetrescu, I. Finocchi, and G. Italiano. Handbook on
Data Structures and Applications.

[26] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Ma-
hajan, and S. Saroiu. Glasnost: Enabling End Users to Detect
Traffic Differentiation. In NSDI, 2010.

[27] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang. Nectar: Automatic Management of Data and
Computation in Datacenters. In OSDI, 2010.

[28] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou.
Comet: Batched Stream Processing for Data Intensive Dis-
tributed Computing. In SoCC, 2010.

[29] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks. In EuroSys, 2007.

[30] D. Logothetis, C. Olston, B. Reed, K. Web, and K. Yocum.
Stateful bulk processing for incremental analytics. In SoCC,
2010.

[31] M. Ali et al. Microsoft CEP server and online behavioral
targeting. In VLDB, 2009.

[32] M. Zaharia et al. Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing. In
NSDI, 2012.

[33] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A Timely Dataflow System. In SOSP,
2013.

[34] D. Peng and F. Dabek. Large-scale Incremental Processing
Using Distributed Transactions and Notifications. In OSDI,
2010.

[35] L. Popa, M. Budiu, Y. Yu, and M. Isard. DryadInc: Reusing
work in large-scale computations. In HotCloud, 2009.

[36] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced
Trees. In CACM, 1990.

[37] G. Ramalingam and T. Reps. A Categorized Bibliography on
Incremental Computation. In POPL, 1993.

[38] T. Rodrigues, F. Benevenuto, M. Cha, K. Gummadi, and
V. Almeida. On Word-of-Mouth Based Discovery of the Web.
In IMC, 2011.

[39] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly avail-
able, fault-tolerant, parallel dataflows. In SIGMOD, 2004.

[40] Z. Qian et al. TimeStream: Reliable Stream Computation in
the Cloud. In EuroSys, 2013.

[41] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized Streams: Fault-Tolerant Streaming Computation
at Scale. In SOSP, 2013.

[42] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Sto-
ica. Improving MapReduce Performance in Heterogeneous
Environments. In OSDI, 2008.

72

	Introduction
	Overview
	Strawman Design
	Adding the Contraction Phase

	Self-Adjusting Contraction Trees
	Folding Contraction Tree
	Randomized Folding Tree

	Split Processing Algorithms
	Rotating Contraction Trees
	Coalescing Contraction Trees

	Query Processing: Multi-Level Trees
	Slider Architecture & Implementation
	Evaluation
	Experimental Setup
	Performance Gains
	Effectiveness of Optimizations
	Overheads

	Real-world Case Studies
	Information Propagation in Twitter
	Monitoring of a Networked System
	Accountability in Hybrid CDNs

	Related Work
	Conclusions

