Incremental Sliding Window Analytics

Pramod Bhatotia and Umut A. Acar and Flavio P. Junqueira and Rodrigo Rodrigues

Abstract Sliding-window computations are widely used for large-scale data anal-
ysis, particularly in live systems where new data arrives continuously. These com-
putations consume significant computational resources because they usually recom-
pute over the full window of data every time the window slides. In this chapter,
we propose techniques for improving the scalability of sliding-window computa-
tions by performing them incrementally. In our approach, when some new data is
added at the end of the window or old data dropped from its beginning, the output is
updated automatically and efficiently by reusing previously run sub-computations.
The key idea behind our approach is to organize the sub-computations as a shallow
(logarithmic depth) balanced tree and perform incremental updates by propagat-
ing changes through this tree. This approach is motivated and inspired by advances
on self-adjusting computation, which enables automatic and efficient incremental
computation. We present an Hadoop based implementation that also provides a
dataflow query processing interface. We evaluate it with a variety of applications and
real-world case studies. Our results show significant performance improvements for
large-scale sliding-window computations without any modifications to the existing
data analysis code.
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1 Introduction

There is a growing need to analyze large feeds of data that are continuously col-
lected. Either due to the nature of the analysis, or in order to bound the computa-
tional complexity of analyzing a monotonically growing data set, this processing
often resorts to a sliding window analysis. In this type of processing, the scope of
the analysis is limited to a recent interval over the entire collected data, and, peri-
odically, newly produced inputs are appended to the window and older inputs are
discarded from it as they become less relevant to the analysis.

The basic approach to sliding-window data processing is to recompute the anal-
ysis over the entire window whenever the window slides. Consequently, even old,
unchanged data items that remain in the window are reprocessed, thus consuming
unnecessary computational resources and limiting the timeliness of results.

We can improve on this using an incremental approach, which normally relies
on the programmers of the data analysis to devise an incremental update mecha-
nism [25,28,33], i.e., an incremental algorithm (or dynamic algorithm) containing
the logic for incrementally updating the output as the input changes. Research in
the algorithms and programming languages communities shows that while such in-
cremental algorithms can be very efficient, they can be difficult to design, analyze,
and implement even for otherwise simple problems [1, 18,22, 38]. Moreover, such
incremental algorithms often assume a uniprocessor computing model, and due to
their natural complexity do not lend themselves well to parallelization, making them
ill-suited for parallel and distributed data analysis frameworks [21,26].

Given the efficiency benefits of incremental computation, an interesting question
is whether it would be possible to achieve these benefits without requiring the design
and implementation of incremental algorithms on an ad hoc basis. Previous work on
systems like Incoop [12, 13], Nectar [24], HaLoop [14], DryadInc [26], or Ciel [31]
shows that such gains are possible to obtain in a transparent way, i.e., without chang-
ing the original (single pass) data analysis code. However, these systems resort to
the memoization of sub-computations from previous runs, which still requires time
proportional to the size of the whole data rather than the change itself. Furthermore,
these systems are meant to support arbitrary changes to the input, and as such do
not take advantage of the predictability of changes in sliding window computations
to improve the timeliness of the results.

In this paper we propose SLIDER, a system for incremental sliding window com-
putations where the work performed by incremental updates is proportional to the
size of the changes in the window (the “delta”) rather than the whole data. In
SLIDER, the programmer expresses the computation corresponding to the analy-
sis using either MapReduce [21] or another dataflow language that can be translated
to the MapReduce paradigm (e.g., Hive [23] or Pig [15]). This computation is ex-
pressed by assuming a static, unchanging input window. The system then guarantees
the automatic and efficient update of the output as the window slides. The system
makes no restrictions on how the window slides, allowing it to shrink on one end and
to grow on the other end arbitrarily (though as we show more restricted changes lead
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to simpler algorithms and more efficient updates). SLIDER thus offers the benefits
of incremental computation in a fully transparent way.

Our approach to automatic incrementalization is based on the principles of self-
adjusting computation [1,2], a technique from the programming-languages commu-
nity that we apply to sliding window computations. In self-adjusting computation, a
dynamic dependency graph records the control and data dependencies of the com-
putation, so that a change-propagation algorithm can update the graph as well as the
data whenever the data changes. One key contribution of this paper is a set of novel
data structures to represent the dependency graph of sliding window computations
that allow for performing work proportional primarily to the size of the slide, in-
curring only a logarithmic—rather than linear—dependency to the size of window.
To the best of our knowledge, this is the first technique for updating distributed
incremental computations that achieves efficiency of this kind.

We further improve the proposed approach by designing a split processing model
that takes advantage of structural properties of sliding window computations to im-
prove response times. Under this model, we split the application processing into two
parts: a foreground and a background processing. The foreground processing takes
place right after the update to the computation window, and minimizes the pro-
cessing time by combining new data with a pre-computed intermediate result. The
background processing takes place after the result is produced and returned, paving
the way for an efficient foreground processing by pre-computing the intermediate
result that will be used in the next incremental update.

We implemented SLIDER by extending Hadoop and evaluate its effectiveness by
applying it to a variety of micro-benchmarks and applications and consider three
real-world cases [8, 9]. Our experiments show that SLIDER can deliver significant
performance gains, while incurring only modest overheads for the initial run (non-
incremental pre-processing run).

2 Background and Overview

In this section, we present some background and an overview of the design of SLIDER.

2.1 Self-Adjusting Computation

Self-adjusting computations is a field that studies ways to incrementalize programs
automatically, without requiring significant changes to the code base [1,6]. For auto-
matic incrementalization, in self-adjusting computations, the system constructs and
maintains a dynamic dependency graph that contains the input data to a program,
all sub-computations, and the data and control dependencies in between, e.g., which
outputs of sub-computations are used as inputs to other sub-computations, which
sub-computations are created by another. The dynamic dependency graph enables
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a change propagation algorithm to update the computation and the output by prop-
agating changes through the dependency graph, re-executing all sub-computations
transitively affected by the change, re-using unaffected computations, and deleting
obsolete sub-computations which no longer take place. The change propagation al-
gorithm has been shown to be effective for a broad class of computations called
stable and has even helped solve algorithmically sophisticated problems in a more
efficient way than more ad hoc approaches (e.g., [3,39].)

2.2 Design Overview

Our primary goal is to design techniques for automatically incrementalizing sliding-
window computation to efficiently update their outputs when the window slides.
We wish to achieve this without requiring the programmer to change any of the
code, which is written assuming that the windows do not slide, i.e., the data remains
static. To this end, we apply the principles of self-adjusting computation to develop
a way of processing data that leads to stable computation, i.e., one whose overall
dependency structure does not change dramatically when the window slides. In this
paper, we apply this methodology to the MapReduce model [21], which enables ex-
pressive, fault-tolerant computations on large-scale data, thereby showing that the
approach can be practical in modern data analysis systems. Nonetheless, the tech-
niques we propose can be applied more generally, since we only require that the
computation can be divided in a parallel, recursive fashion. In fact, the techniques
that we propose can be applied to other large-scale data analysis models such as
Dryad [26], Spark [43], Pregel [30], which allow for recursively breaking up a com-
putation into sub-computations.

Assuming that the reader is familiar with the MapReduce model, we first outline
a basic design and then identify the limitations of this basic approach and describe
how we overcome them. For simplicity, we assume that each job includes a single
Reduce task (i.e., all mappers output tuples with the same key). By symmetry, this
assumption causes no loss of generality; in fact our techniques and implementation
apply to multiple keys and reducers.

The basic design. Our basic design corresponds roughly to the scheme proposed in
prior work, Incoop [12, 13], where new data items are appended at the end of the
previous window and old data items are dropped from the beginning. To update the
output incrementally, we launch a Map task for each new “split” (a partition of the
input that is handled by a single Map task) that holds new data and reuse the results
of Map tasks operating on old but live data. We then feed the newly computed results
together with the re-used results to the Reduce task to compute the final output.

Contraction trees and change propagation. The basic design suffers from an im-
portant limitation: it cannot reuse any work of the Reduce task. This is because the
Reduce task takes as input all values for a given key (< K; >, < Vi,V,,V3,..V,, >),
and therefore a single change triggers a re-computation of the entire Reduce task.
We address this by organizing the Reduce tasks as a contraction tree and proposing
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a change-propagation algorithm that can update the result by performing traversals
on the contraction tree, while maintaining it balanced (low-depth) and thus guaran-
teeing efficiency.

Contraction trees (used in Incoop [13], Camdoop [20], iMR [29]) leverage Com-
biner functions of MapReduce to break a Reduce task into smaller sub-computations
that can be performed in parallel. Combiner functions originally aim at saving band-
width by offloading parts of the computation performed by the Reduce task to the
Map task. To use combiners, the programmer specifies a separate Combiner func-
tion, which is executed on the machine that runs the Map task, and performs part
of the work done by the Reduce task in order to pre-process various <key,value>
pairs, merging them into a smaller number of pairs. The combiner function takes
both as an input and output type a sequence of <key,value> pairs. This new usage
of Combiners is compatible with the original Combiner interface, but requires as-
sociativity for grouping different Map outputs. To construct a contraction tree, we
break up the work done by the (potentially large) Reduce task into many applica-
tions of the Combiner functions. More specifically, we split the Reduce input into
small groups, and apply the Combine to pairs of groups recursively in the form of a
balanced tree until we have a single group left. We apply the Reduce function to the
output of the last Combiner.

When the window slides, we employ a change-propagation algorithm to update
the result. Change propagation runs Map on the newly introduced data and propa-
gates the results of the Map tasks through the contraction tree that replaced the Re-
duce task. One key design challenge is how to organize the contraction tree so that
this propagation requires minimal amount of time. As explained in Section ??, we
overcome this challenge by designing contraction trees and the change-propagation
algorithm such that change propagation always guarantees that the contraction trees
remain balanced, guaranteeing low depth. As a result, change propagation can per-
form efficient updates by traversing only through a short path of the contraction tree.
In this approach, performing an update not only updates the data but also the struc-
ture of the contraction tree (so that it remains balanced), guaranteeing that updates
remain efficient regardless of the past history of window slides.

In addition to contraction trees and change propagation, we also present a split
processing technique, that takes advantage of the structural properties of sliding-
window computation to improve response times. Split processing splits the total
work into background tasks, which can be performed when no queries are execut-
ing, and foreground tasks which must be performed in order to respond to a query
correctly. By pre-processing certain computation in the background, split processing
can improve performance significantly (up to 40% in our experiments).

The techniques that we present here are fully general: they apply to sliding win-
dow computations where the window may be re-sized arbitrarily by adding as much
new data at the end and removing as much new data from the beginning as desired.
As we describe, however, more restricted updates where for example the window is
only expanded by append operations (append-only), or where the size of the window
remains the same (fixed-size windows), lead to a more efficient and simpler design,
algorithms, and implementation.
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3 Slider Architecture

In this section, we give an overview of our implementation. Its key components are
described in the following.

Implementation of self-adjusting trees. We implemented our prototype of SLIDER
based on Hadoop. We implemented the three variants of the self-adjusting contrac-
tion tree by inserting an additional stage between the shuffle stage (where the outputs
of Map tasks are routed to the appropriate Reduce task) and the sort stage (where
the inputs to the Reduce task are sorted). To prevent unnecessary data movement in
the cluster, the new contraction phase runs on the same machine as the Reduce task
that will subsequently process the data.

SLIDER maintains a distributed dependency graph from one run to the next and
pushes the changes through the graph by re-computing sub-computations affected
by the changed input. For this purpose, we rely on a memoization layer to remember
the inputs and outputs of various tasks and the nodes of the self-adjusting contraction
trees. A shim I/O layer provides access the memoization layer. This layer stores data
in an in-memory distributed data cache, which provides both low-latency access and
fault tolerance.

Split processing knob. SLIDER implements the split processing capability as an
optional step that is run offline on a best effort basis. This stage is scheduled during
low cluster utilization periods as a background task. It runs as a distributed data
processing job (similar to MapReduce) with only one offline pre-processing stage.

In-memory distributed data caching. To provide fast access to memoized results,
we designed an in-memory distributed data caching layer. Our use of in-memory
caching is motivated by two observations: First, the number of sub-computations
that need to be memoized is limited by the size of the sliding window. Second, main
memory is generally underutilized in data-centric computing [4]. The distributed in-
memory cache is coordinated by a master node, which maintains an index to locate
the memoized results. The master implements a simple cache replacement policy,
which can be changed according to the workload characteristics. The default policy
is Least Recently Used (LRU).

Fault-tolerance. Storing memoized results in an in-memory cache is beneficial for
performance, but can lead to reduced cache effectiveness when machines fail, as it
requires unnecessary re-computation (especially for long running jobs). We there-
fore conduct a background replication of memoized results to provide fault toler-
ance by creating two replicas of each memoized result (similar to RAMCloud [32]).
This way fault tolerance is handled transparently: when a new task wants to fetch
a memoized result it reads that result from one of the replicas. To ensure that the
storage requirements remain bounded, we developed a garbage collection algorithm
that frees the storage used by results that fall out of the current window.

Scheduler modifications. The implementation of SLIDER modifies Hadoop’s sched-
uler to become aware of the location of memoized results. Hadoop’s scheduler
chooses any available node to run a pending Reduce task, only taking locality into
account when scheduling Map tasks by biasing towards the node holding the input.
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SLIDER’s scheduler adapts previous work in data-locality scheduling [13,40-42], by
attempting to run Reduce tasks on the machine that contains the memoized outputs
of the combiner phase. When that target machine is overloaded, it migrates tasks
from the overloaded node to another node, including the relevant memoized results.
Task migration is important to prevent a significant performance degradation due to
straggler tasks [44].

Dataflow query processing. As SLIDER is based on Hadoop, computations can
be implemented using the MapReduce programming model. While MapReduce is
gaining in popularity, many programmers are more familiar with query interfaces,
as provided by SQL or LINQ. To ease the adoption of SLIDER, we also provide a
dataflow query interface that is based on Pig [15]. Pig consists of a high-level lan-
guage similar to SQL and a compiler, which translates Pig programs to sequences
of MapReduce jobs. As such, the jobs resulting from this compilation can run in
SLIDER without adjustment. This way, we transparently run Pig-based sliding win-
dow computations in an incremental way.

4 Related Work

Next, we present a survey of work in the areas of sliding-window and incremental
processing.

Dynamic and data-streaming algorithms. This class of algorithms are designed
to efficiently handle changing input data. Several surveys discuss the vast literature
on dynamic algorithms, e.g., [5, 18,22, 38]). Despite their efficiency, dynamic algo-
rithms are difficult to develop and specific to a use case: their adaptation to other
applications is either not simple or not feasible.

Programming language-based approaches. Programming languages researchers
developed incremental computation techniques to achieve automatic incremental-
ization [1, 38]. The goal is to incrementalize programs automatically without sac-
rificing efficiency. Recent advances on self-adjusting computation made significant
progress towards this goal by proposing general-purpose techniques that can achieve
optimal update times [1]. This work, however, primarily targets sequential computa-
tions. The recent work on iThreads [10] supports parallel incremental computation.
In contrast, we developed techniques that are specific to sliding-window computa-
tions, and operate on big data by adapting the principles of self-adjusting computa-
tion for a large-scale parallel and distributed execution environment.

Database systems. There is substantial work from the database community on in-
crementally updating a database view (i.e., a predetermined query on the database)
as the database contents change [17]. database view [17]. In contrast, our focus
on the MapReduce model, with a different level of expressiveness, and on sliding-
window computations over big data brings a series of different technical challenges.

Distributed systems. There is some work on incremental large-scale processing
of unstructured data sets [11-13,24, 27,28, 33]. SLIDER is designed to operate at
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the same scale and shares some characteristics with this work, such as including
a simple programming model, transparent data-parallelization, fault tolerance and
scheduling. Furthermore, it builds on some concepts from this prior work, namely
the idea of Incoop [13] to break up the work of Reduce task using Combiner func-
tions organized in a tree. There are two important distinctions to these previous
proposals. First, prior proposals such as Incoop use memoization instead of change
propagation: when the data to a MapReduce computation changes, Incoop scans the
whole input data again and performs all the steps of the computation except that it
can reuse results from Map and Combine tasks stored via memoization. In contrast,
each run in SLIDER knows only about the new data that was introduced to the win-
dow and the old data that was dropped, and only has to examine and recompute the
subset of the computation that is transitively affected by those changes. Second, our
design includes several novel techniques that are specific to sliding window com-
putations are important to improve the performance for this mode of operation. The
follow up work on IncApprox [27] extends the approach of Slider to support incre-
mental approximate computing for sliding window analytics. In particular, IncAp-
prox combines incremental computation and approximate computation [34-37].

Batched stream processing. Stream processing engines [16,19,25] model the input
data as a stream, with data-analysis queries being triggered upon bulk appends to the
stream. These systems are designed for append-only data processing, which is only
one of the cases we support. Compared to Comet [25] and Nova [16], SLIDER avoids
the need to design a dynamic algorithm, thus preserving the transparency relative to
single-pass non-incremental data analysis. Hadoop online [19] is transparent but
does not attempt to break up the work of the Reduce task, which is one of the key
contributions and sources of performance gains of our work.

5 Conclusion

In this chapter, we present techniques for incrementally updating sliding window
computations as the window slides. The idea behind our approach is to structure dis-
tributed data-parallel computations in the form of balanced trees that can perform
updates in asymptotically sublinear time, thus much more efficiently than recom-
puting from scratch. We present several algorithms for common instances of slid-
ing window computations, describe the design of a system, SLIDER [8, 9], that uses
these algorithms, and present an implementation along with an extensive evaluation.
Our evaluation shows that 1) SLIDER is effective on a broad range of applications,
2) SLIDER drastically improves performance compared to the re-computing from
scratch, and 3) SLIDER significantly outperforms several related systems. These re-
sults show that some of the benefits of incremental computation can be realized au-
tomatically without requiring programmer-controlled hand incrementalization. The
asymptotic efficiency analysis of self-adjusting contraction trees is available [7].
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