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Abstract
We introduce SPEICHER, a secure storage system that

not only provides strong confidentiality and integrity prop-
erties, but also ensures data freshness to protect against
rollback/forking attacks. SPEICHER exports a Key-Value (KV)
interface backed by Log-Structured Merge Tree (LSM) for
supporting secure data storage and query operations. SPE-
ICHER enforces these security properties on an untrusted host
by leveraging shielded execution based on a hardware-assisted
trusted execution environment (TEE)—specifically, Intel
SGX. However, the design of SPEICHER extends the trust in
shielded execution beyond the secure SGX enclave memory
region to ensure that the security properties are also preserved
in the stateful (or non-volatile) setting of an untrusted storage
medium, including system crash, reboot, or migration.

More specifically, we have designed an authenticated
and confidentiality-preserving LSM data structure. We
have further hardened the LSM data structure to ensure
data freshness by designing asynchronous trusted counters.
Lastly, we designed a direct I/O library for shielded execution
based on Intel SPDK to overcome the I/O bottlenecks in
the SGX enclave. We have implemented SPEICHER as a
fully-functional storage system by extending RocksDB, and
evaluated its performance using the RocksDB benchmark.
Our experimental evaluation shows that SPEICHER incurs
reasonable overheads for providing strong security guarantees,
while keeping the trusted computing base (TCB) small.

1 Introduction
With the growth in cloud computing adoption, online data
stored in data centers is growing at an ever increasing rate [11].
Modern online services ubiquitously use persistent key-value
(KV) storage systems to store data with a high degree of reliabil-
ity and performance [39, 65]. Therefore, persistent KV stores
have become a fundamental part of the cloud infrastructure.

At the same time, the risks of security violations in
storage systems have increased significantly for the third-
party cloud computing infrastructure [66]. In an untrusted
environment, an attacker can compromise the security

properties of the stored data and query operations. In fact,
many studies show that software bugs, configuration errors,
and security vulnerabilities pose a serious threat to storage
systems [9, 12, 16, 20, 24, 35, 37].

However, securing a storage system is quite challenging be-
cause modern storage systems are quite complex [9, 49, 64, 72].
For instance, a persistent KV store based on the Log-Structured
Merge Tree (LSM) data structure [54] is composed of multiple
software layers to enable a data path to the storage persistence
layer. Thereby, the enforcement of security policies needs
to be carried out by various layers in the system stack, which
could expose the data to security vulnerabilities. Furthermore,
since the data is stored outside the control of the data owner,
the third-party storage platform provides an additional attack
vector. The clients currently have limited support to verify
whether the third-party operator, even with good intentions,
can handle the data with the stated security guarantees.

In this landscape, the advancements in trusted execution
environments (TEEs), such as Intel SGX [4] or ARM
TrustZone [7], provide an appealing approach to build
secure systems. In fact, given the importance of security
threats in the cloud, there is a recent surge in leveraging
TEEs for shielded execution of applications in the untrusted
infrastructure [8, 10, 55, 69, 75]. Shielded execution aims to
provide strong security properties using a hardware-protected
secure memory region or enclave.

While the shielded execution frameworks provide strong
security guarantees against a powerful adversary, they are
primarily designed for securing “stateless" (or volatile)
in-memory computations and data. Unfortunately, these
stateless techniques are not sufficient for building a secure
storage system, where the data is persistently stored on an
untrusted storage medium, such as an SSD or HDD. The
challenge is how to extend the trust beyond the “secure, but
stateless/volatile" enclave memory region to the “untrusted
and persistent" storage medium, while ensuring that the
security properties are preserved in the “stateful settings", i.e.,
even across the system reboot, migration, or crash.

To answer this question, we aim to build a secure storage sys-



tem using shielded execution targeting all three important se-
curity properties for the data storage and query processing: (a)
confidentiality — unauthorized entities cannot read the data, (b)
integrity — unauthorized changes to the data can be detected,
and (c) freshness — stale state of data can be detected as such.

To achieve these security properties, more specifically, we
need to address the following three architectural limitations of
shielded execution in the context of building a secure storage
system: Firstly, the secure enclave memory region is quite lim-
ited in size, and incurs high performance overheads for memory
accesses. It implies that the storage engine cannot store the
data inside the enclave memory; thus, the in-memory data
needs to be stored in the untrusted host memory. Furthermore,
the storage engine persists the data on an untrusted storage
medium, such as SSDs. Since the TEE cannot give any security
guarantees beyond the enclave memory, we need to design
mechanisms for extending the trust to secure the data in the un-
trusted host memory and also on the persistent storage medium.

Secondly, the syscall-based I/O operations are quite
expensive in the context of shielded execution since the
thread executing the system call has to exit the enclave, and
perform a secure context switch, including TLB flushing,
security checks, etc. While existing shielded execution
frameworks [8, 55] proposed an asynchronous system call
interface [70], it is clearly not well-suited for building a
storage system that requires frequent I/O calls. To mitigate
the expensive enclave exits caused by I/O syscalls, we need to
design a direct I/O library for shielded execution to completely
eliminate the expensive context switch from the data path.

Lastly, we also aim to ensure data freshness to protect
against rollback (replay old state) or forking attacks (create
second instance). Therefore, we need a protection mechanism
based on a trusted monotonic counter [57], for example, SGX
trusted counters [3]. Unfortunately, the SGX trusted counters
are extremely slow and they wear out within a couple of days
of operation. To overcome the limitations of the SGX counters,
we need to redesign the trusted monotonic counters to suit the
requirements of modern storage systems.

To overcome these design challenges, we propose SPE-
ICHER, a secure LSM-based KV storage system. More
specifically, we make the following contributions.
• I/O library for shielded execution: We have designed

a direct I/O library for shielded execution based on Intel
SPDK. The I/O library performs the I/O operations with-
out exiting the secure enclave; thus it avoids expensive
system calls on the data path.
• Asynchronous trusted monotonic counter: We have

designed trusted counters to ensure data freshness. Our
counters leverage the lag in the sync operations in modern
KV stores to asynchronously update the counters. Thus,
they overcome the limitations of the native SGX counters.
• Secure LSM data structure: We have designed a secure

LSM data structure that resides outside of the enclave
memory while ensuring the integrity, confidentiality and

freshness of the data. Thus, our LSM data structure over-
comes the memory and I/O limitations of Intel SGX.
• Algorithms: We present the design and implementation

of all storage and query operations in persistent KV stores:
get, put, range queries, iterators, compaction, and restore.

We have built a fully-functional prototype of SPEICHER
based on RocksDB [65], and extensively evaluated it using
the RocksDB benchmark suite. Our evaluation shows that
SPEICHER incurs reasonable overheads, while providing
strong security properties against powerful adversaries.

2 Background and Threat Model
2.1 Intel SGX and Shielded Execution
Intel Software Guard Extension (SGX) is a set of x86 ISA
extensions for Trusted Execution Environment (TEE) [15].
SGX provides an abstraction of secure enclave—a hardware-
protected memory region for which the CPU guarantees the
confidentiality and integrity of the data and code residing in
the enclave memory. The enclave memory is located in the
Enclave Page Cache (EPC)—a dedicated memory region
protected by an on-chip Memory Encryption Engine (MEE).
The MEE encrypts and decrypts cache lines with writes and
reads in the EPC, respectively. Intel SGX supports a call-gate
mechanism to control entry and exit into the TEE.

Shielded execution based on Intel SGX aims to provide
strong confidentiality and integrity guarantees for applications
deployed on an untrusted computing infrastructure [8, 10, 55,
69, 75]. Our work builds on the SCONE [8] shielded execution
framework. In SCONE, the applications are statically compiled
and linked against a modified standard C library (SCONE libc).
In this model, application’s address space is confined to the
enclave memory, and interaction with the untrusted memory is
performed via the system call interface. In particular, SCONE
runtime provides an asynchronous system call mechanism [70]
in which threads outside the enclave asynchronously execute
the system calls. SCONE protects the executing application
against Iago attacks [13] through shields. Furthermore, it en-
sures memory safety for the applications running inside the
SGX enclaves [36]. Lastly, SCONE provides an integration to
Docker for seamlessly deploying containers.

2.2 Persistent Key-Value (KV) Stores
Our work focuses on persistent KV stores based on the LSM
data structure [54], such as LevelDB [39] and RocksDB [65].
In particular, we base our design on RocksDB. RocksDB
organizes the data using three constructs: MemTable, static
sorted table (SSTable), and log files.

RocksDB inserts put requests to a memory-resident
MemTable that is organized as a skip list [62]. For crash
recovery, these puts are also sequentially logged to the
write-ahead-log (WAL) file backed by persistent storage
medium with checksums. When the MemTable fills up, it
is moved to an SSTable file backed by an SSD or HDD in a
batch to ensure sequential device access (this thus can cause
scanning the skip list).



The SSTable files are grouped into levels with increasing
size (typically 10×). The process of moving data to the next
level is called compaction, which ensures the SSTables to
be sorted by keys, including the ones being merged from the
previous level. Since SSTables are immutable, compaction
always creates new SSTables on the persistent storage medium.
Any state changes in the entire storage system, such as creation
and deletion of SSTable and WAL files, are recorded to the
Manifest, which is a transactional and persistent log.

On a get request, RocksDB first searches the MemTable
for the key, then searches the SSTables from the lowest level
in turn; at each level, it binary-searches the corresponding
SSTable. Using this primitive, it is trivial to process range
and iterator queries, where the latter only differs in the client
interface. RocksDB maintains an index table with a Bloom
filter attached to each SSTable in order to avoid searching
unnecessary SSTables.

While restarting, RocksDB establishes the latest state in
a restore operation. To this end, the Manifest and the WAL
are read and replayed.

2.3 Threat Model
In addition to the standard SGX threat model [10], we also
consider the security attacks that can be launched using an un-
trusted storage medium, e.g., persistent state stored on an SSD
or HDD. More specifically, we aim to protect against a pow-
erful adversary in the virtualized cloud computing infrastruc-
ture [10]. In this setting, the adversary can control the entire sys-
tem software stack, including the OS or hypervisor, and is able
to launch physical attacks, such as performing memory probes.

For the untrusted storage component, we also aim to
protect against rollback attacks [57], where the adversary can
arbitrarily shut down the system, and replay from a stale state.
We also aim to protect against forking attacks [40], where
the adversary can attempt to fork the storage system, e.g., by
running multiple replicas of the storage system.

Even under the extreme threat model,our goal is to guarantee
the data integrity, confidentiality, and freshness. Lastly, we also
aim to provide crash consistency for the storage system [58].

However, we do not protect against side-channel attacks,
such as exploiting cache timing and speculative execution [78],
or memory access patterns [25, 81]. Mitigating side channel
attacks in the TEEs is an active area of research [53]. Further,
we do not consider the denial of service attacks since these
attacks are trivial for a third-party operator controlling the
underlying infrastructure [10]. Lastly, we assume that the
adversary cannot physically open the processor packaging to
extract secrets or corrupt the CPU system state.

3 Design
SPEICHER is a secure persistent KV storage system designed
to operate on an untrusted host. SPEICHER provides strong
confidentiality, integrity, and freshness guarantees for the
data storage and query operations: get, put, range queries,
iterators, compaction, and restore. In this paper, we

implemented SPEICHER by extending RocksDB [65], but our
architecture can be generalized to other LSM-based KV stores.

3.1 Design Challenges
As a strawman design, we could try to secure a storage
system by running the storage engine inside the enclave
memory. However, the design of a practical and secure system
requires addressing the following four important architectural
limitations of Intel SGX.

I: Limited EPC size. The strawman design would be able
to protect the in-memory state of the MemTable using the
EPC memory. However, EPC is a limited and shared resource.
Currently, the size of EPC is 128 MiB. Approximately 94 MiB
are available to the user, the rest is reserved for the metadata.
To allow creation of enclaves with sizes beyond that of EPC,
SGX features a secure paging mechanism. The OS can evict
EPC pages to an unprotected memory using SGX instructions.
During eviction, the page is re-encrypted. Similarly, when an
evicted page is brought back, it is decrypted and its integrity
is checked. However, the EPC paging incurs high performance
overheads (2×—2000×) [8].

Therefore, we need to redesign the shielded storage engine,
where we allocate the MemTable(s) outside the enclave in the
untrusted host memory. Since the secure enclave region cannot
give any guarantees for the data stored in the host memory,
and the native MemTable is not designed for security—we
designed a new MemTable data structure to guarantee the
confidentiality, integrity and freshness properties.

II: Untrusted storage medium. The storage engine does not
exclusively store the data in the in-memory MemTable, but
also on a persistent storage medium, such as on an SSD or
HDD. In particular, the storage engine stores three types of
files on a persistent storage medium: SSTable, WAL and the
Manifest. However, Intel SGX is designed to protect only the
volatile state residing in the enclave memory. Unfortunately,
SGX does not provide any security guarantees for stateful
computations, i.e., across system reboot or crash. Further, the
trust from the TEE does not naturally extend to the untrusted
persistent storage medium.

To achieve the end-to-end security properties, we further
redesigned the LSM data structure, including the persistent
storage state in the SSTable and log files, to extend the trust
to the untrusted storage medium.

III: Expensive I/O syscall. To access data stored on an SSD
or HDD (in the SSTable, WAL or Manifest files), conventional
systems leverage the system call interface. However, the
system call execution in the SGX environment incurs high
performance overheads. This is because the thread executing
the system call has to exit the enclave, and the syscall
arguments need to be copied in and out of the enclave memory.
These enclave transitions are expensive because of security
checks and TLB flushes.

To mitigate the context switch overhead, shielded execution
frameworks, such as SCONE [8] or Eleos [55], provide an



asynchronous system call interface [70], where a thread
outside the enclave asynchronously executes the system calls
without forcing the enclave threads to exit the enclave. While
such an asynchronous interface is useful for many applications,
it is not clearly suited for building a storage system that needs
to support frequent I/O system calls.

To support frequent I/O calls within the enclave, we
designed a new I/O mechanism based on a direct I/O library
for shielded execution leveraging storage performance
development kit (SPDK) [28].

IV: Trusted counter. In addition to guaranteeing the integrity
and confidentiality, we also aim to ensure the freshness of the
stored data to protect against rollback attacks [57]. To achieve
the freshness property, we need to protect the data stored in the
untrusted host memory (MemTable), and those on the untrusted
persistent storage medium (SSTable, WAL and Manifest files).

For the first part, i.e., to ensure the freshness of MemTable
allocated in the untrusted host memory, we can leverage
the EPC of SGX. In particular, the Memory Encryption
Engine (MEE) in SGX already protects the EPC against
rollback attack. Therefore, we use the EPC to store a freshness
signature of the MemTable, which we use at runtime to verify
the freshness of data stored as part of the MemTable in the
untrusted host memory.

However, the second part is quite tedious, i.e., to ensure
the freshness of the data stored on untrusted persistent storage
(SSTables and log files), because the rollback protected
EPC memory is stateless, or it cannot be used to verify the
freshness properties after the system reboots or crashes.
Therefore, we need a rollback protection mechanism based
on a trusted monotonic counter [57]. For example, we could
use SGX trusted counters [3]. Unfortunately, the SGX trusted
counters are extremely slow (60−250 ms) [45]. Furthermore,
the counter memory allows only a limited number of write
operations to NVRAM, and it easily becomes unusable due
to wear out within a couple of days of operation. Therefore,
the SGX counters are impractical to design a storage system.

To overcome the limitations of SGX counters, we designed
an asynchronous trusted monotonic counter that drastically
improves the throughput and mitigates wear-out by taking
advantage of the crash consistency properties of modern
storage systems.

3.2 System Components
We next detail the system components of SPEICHER. Figure 1
illustrates the high-level architecture and building blocks
of SPEICHER. The system is composed of the controller, a
direct-I/O library for shielded execution, a trusted monotonic
counter, the storage engine (RocksDB engine), and a secure
LSM data structure (MemTable, SSTable, and log files).

SPEICHER controller. The controller provides the trusted
execution environment based on Intel SGX [8]. Clients
communicate over a mutually authenticated encrypted channel
(TLS) to the controller. The TLS channel is terminated inside
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Figure 1: SPEICHER overview (shaded boxes depict the
system components)

the controller. In particular, we built the controller based
on the SCONE shielded execution framework [8], where we
leverage SCONE’s container support for secure deployment
of the SPEICHER executable on an untrusted host.

The controller provides the remote attestation service to
the clients [6, 32]. In particular, the SGX enclave generates
a signed measured of its identity, whose authenticity can be
verified by a third party. After successful attestation, the client
provides its encryption keys to the controller. The controller
uses the client certificate to perform the access control
operation. The controller also provides runtime support for
user-level multithreading and memory management inside
the enclave. The controller leverages the asynchronous system
calls interface (SCONE libc) on the control path for the system
configuration. For the data path I/O, we built a direct I/O
library, which we describe next.
Shielded direct I/O library. The I/O library allows the
storage engine to access the SSD or HDD from inside the SGX
enclave, without issuing the expensive enclave exit operations.
We achieve this by building a direct I/O library for shielded
execution based on SPDK [28].

SPDK is a high-performance user-mode storage library,
based on Data Plane Development Kit (DPDK) [2]. It elimi-
nates the need to issue system calls to the kernel for read and
write operations by having the NVMe driver in the user space.
SPDK enables zero-copy I/O by mapping DMA buffers to
the user address space. It relies on actively polling the device
instead of interrupts.

These SPDK features align with the goal of SPEICHER of
exit less I/O operations in the enclave, i.e., to allow the shielded
storage engine to interact with the SSD directly. However, we
need to adapt the design of SPDK to overcome the limitations
of the enclave memory region. In particular, our shielded I/O
library allocates huge pages and SPDK ring buffers outside
the enclave for DMA. The host system maps the device in an
allocated DMA region. Afterwards SPDK can initialize the
device. To reduce the number of enclave exits, SPDK’s device
driver runs inside the enclave. This enables efficient delivery of
requests from the storage engine to the driver, which explicitly
copies the data between the host and the enclave memory.



Trusted counter. In order to protect the system from rollback
attacks, we need a trusted counter whose value is stored
alongside with the LSM data structure. Intel SGX provides
monotonic counters, but their update frequency is in a range of
10 updates per second, and we indeed measured approximately
250 ms to increment a counter once. This is far too slow for
modern KV stores [26].

To overcome the limitations of SGX counters, we designed
an Asynchronous Monotonic Counter (AMC) based on the
observation that many contemporary KV stores do not persist
their inserted data immediately. This allows AMC to defer the
counter increment until the data is persisted without loosing
any availability guarantees. As a result, AMC achieves 70K
updates per second in the current implementation.

AMC provides an asynchronous increment interface,
because it takes a while since the counter value is incremented
until it becomes stable, which means the counter value cannot
be rolled back without being detected. At an increment, AMC
returns three pieces of information: the current stable value,
the incremented counter value, and the expected time for the
value to be stable. Due to the expected time and the controller
having to be re-authenticated after a shutdown, the client only
has to keep the values until the stable time has elapsed, to
prevent any data loss in case of a sudden shutdown.

AMC’s flexible interface allows us to optimize update
throughput and latency by increasing the time until a trusted
counter is stable. This also allows users to adjust trade-off
between the wear out of the SGX monotonic counter and the
maximum number of unstable counter increments, which a
client might have to account for. SPEICHER generates multiple
counters by storing their state to a file, whose freshness is
guaranteed through the use of a synchronous trusted mono-
tonic counter. For instance, we can employ SGX monotonic
counters [3], ROTE [45] or Ariadne [71] to support our
asynchronous interface. Therefore, we can have a counter with
deterministic increments for WAL and the Manifest, making it
possible to argue about the freshness of each record in the files.

MemTable. As detailed in §3.1, the EPC is limited in size and
the EPC paging incurs very high overheads. Therefore, it is
not judicious to store large MemTables or multiple MemTa-
bles within the EPC. Further, since SPEICHER uses the EPC
memory region to secure the storage engine (RocksDB) and the
shielded I/O library driver, it further shrinks the available space.

Due to this memory restriction, we need to store the
MemTable in the host memory. Since the host memory is
untrusted, we need to devise a mechanism to ensure the
confidentiality, integrity, and freshness of the MemTable.

In our project, we tried three different designs for the
MemTable. Firstly, we explored a native Merkle tree that gen-
erates hashes of the leafs and stores them in each node. Thus,
we can verify the data integrity by checking the root node hash
and each hash down to the leaf storing the KV, while allowing
the MemTable to be stored outside the EPC memory. However,
the native Merkle tree suffers from slow lookups as the key has
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Figure 2: SPEICHER MemTable format

to be decrypted on each traversal. Further, it requires multiple
hash recalculations on each lookup and insertion.

Secondly, we tried a modified Merkle tree design based on
a prefix array, where a fixed size prefix is used as an index into
the array of Merkle trees. An array entry holds the root node of
a Merkle tree, which holds the actual data. This should reduce
the depth of the search tree compared to the native Merkle tree;
thus, reducing the number of necessary hash calculations and
decryptions of keys. However, while we were able to increase
the lookup speed compared to the native Merkle tree, it still
suffered from the same problem of having to decrypt a large
number of keys in a lookup, and causing a large number of
hash calculations.

Lastly, our third attempt of the MemTable design reuses the
existing skip list data structure for the MemTable in RocksDB.
Figure 2 shows SPEICHER’s MemTable format. In particular,
we partition the existing MemTable in two parts: key path and
value path. In the key path, we store the keys as part of the skip
list inside the enclave. Whereas, the encrypted values in the
MemTable are stored in the untrusted host memory as part of
the value path. This partitioning allows SPEICHER to provide
confidentially by encrypting the value, while still enabling
fast key lookups inside the enclave. To prevent attacks on the
integrity or the freshness of the values, SPEICHER stores a
cryptographic hash of the value in each skip list node together
with the host memory location of the value.

While the first two designs removed almost the entire
MemTable from the EPC, the last design still maintains the
keys and hash values inside the enclave memory. To determine
the space requirements of our MemTable in comparison to the
regular RocksDB’s MemTable, we use the following formula:

S=n∗(k+v)+
m

∑
i=0

pi∗n∗ptr

Where S represents the entire size of the skip list, n is the
number of KV pairs, k is the key size, v is the value size or
the size of the pointer plus hash value for our skip list, p is the
probability for being added into a specific layer of the skip list,
m is the maximum number of layers, and ptr is the size of a
pointer in the system.

For instance, in case of the default setting for RocksDB,
with a maximum size of 64 MiB, key size of 16 B, value size
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of 1024 B, pointer size of 8 B, p of 1/4, m of 12 and for SPE-
ICHER’s skip list a hash size of 16 B — SPEICHER’s MemTable
achieves a space reduction of approximately 95.2 %. Further,
the reduction ratio increases with increased value size.
SSTables. The SSTable files maintain the KV pairs persis-
tently. These files store KV pairs in the ascending order of
keys. This organization allows for a binary search within the
SSTable, requiring only a few reads to find a KV-pair within
the file. Since SSTable files are optimized for block devices,
such as SSDs, they group KV pairs together into blocks (the
default block size is 32 KiB).

SPEICHER adapts SSTable file format to ensure the security
properties (see Figure 3 for SPEICHER’s SSTable file format).
The confidentiality is secured by encrypting each block of
the SSTable file before it is written to the persistent storage
medium. Additionally, SPEICHER calculates a cryptographic
hash over each block. These hashes are then grouped together
in a block of hashes and appended at the end of the SSTable
file. When reading SPEICHER can check the integrity of each
block by calculating the block’s hash and comparing it to
the corresponding hash stored in the footer. To protect the
integrity of the footer an additional hash over the footer is
calculated and stored in the Manifest. Since the Manifest
is protected against rollback attacks using a trusted counter,
the footer hash value stored in the Manifest is also protected
from the rollback attacks. Thus, SPEICHER can use this hash
to guarantee the freshness of the SSTable file’s footer and
transitively the freshness of each block in the SSTable file.
Log files. RocksDB uses two different log files to keep track of
the state of the KV store: (a) WAL for persisting inserted KV
pairs until a top-level compaction; and (b) the Manifest to keep
track of live files, i.e., the set of files of which the current state
of the KV store consists. SPEICHER adapted these log files

to ensure the desired security properties, as shown in Figure 4.
Regarding WAL, every put operation appends a record to

the current WAL. This record consists of the encrypted KV
pair, and an encrypted trusted counter value for the WAL at
the moment of insertion, and a cryptographic hash over both.
Since the records are only appended to the WAL, SPEICHER
can use the trusted counter value and the hash value to verify
the KV pair, and to replay the operations in a restore event.

The Manifest is similar to the WAL; it is a write-append log
consisting of records storing changes of live files. We use the
same scheme for the Manifest file as we do for the WAL.

3.3 Algorithms
We next present the algorithms for all storage operations in
SPEICHER. The associated pseudocodes are detailed in the
appendix.

I: Put. Put is used to insert a new KV pair into the KV store, or
to update an existing one. We need to perform two operations
to insert the KV pair into the store (see Algorithm 1). First, we
need to append the KV pair to the WAL for persistence. Second,
we need to write the KV pair to the MemTable for fast lookups.

Inserting the KV pair into the WAL guarantees that the state
of the KV store can be restored after an unexpected reboot.
Therefore, the KV pair should be inserted into the WAL before
it is inserted into the MemTable. To add a KV pair to the WAL,
SPEICHER encrypts the pair together with the next WAL trusted
counter value and a cryptographic hash over both the data and
the counter. The encrypted block is then appended to the WAL
(see the log file format in Figure 4). Thereafter, the trusted
counter is incremented to the value stored in the appended
block. In addition, the client is notified when the KV pair will
be stable; thereafter, the state cannot be rolled back. In case of a
system crash between generating the data block and increasing
the trusted counter value, the data block would be invalid at re-
boot, because the trusted counter would point the block to a fu-
ture time. This operation is safe as the client can detect a reboot
when SPEICHER tries to authenticate itself. After the reboot the
client can ask the KV store about what the last added key was,or
can simplyput the KV pair again in the store as another request
with the same key supersedes any old value with the same key.

In the second step, SPEICHER writes the KV pair into
the MemTable and thereby making the put visible to later
gets. SPEICHER first encrypts the value of the KV pair and
generates a hash over the encrypted data. The encrypted value
is then copied to the untrusted host memory, while the hash
with a pointer to the value is inserted into the skip list in the
enclave, in accordance to SPEICHER’s MemTable format
(Figure 2). Since the KV pair is first inserted into the WAL,
and only if this is successful, i.e., the WAL and trusted counter
are updated, we can guarantee that only KV value pairs whose
freshness is secured by the trusted counter are returned.

II: Get. Get may involve searching multiple levels in the
LSM data structure to find the latest value. Within each level,
SPEICHER has to generate either the proof of existence, or the



proof of non-existence of the key. This is necessary to detect
insertion or deletion of the KV pairs by an attacker.

Algorithm 2 details the get operation in SPEICHER. In
particular, SPEICHER begins with searching the MemTable.
SPEICHER searches the skip list for the node with the key.
Either the key is in the MemTable, then the hash value is
calculated over the value and compared to the hash stored
in the skip list, or the key could not be found in the skip list.
Since the skip list resides inside the protected memory region,
SPEICHER does not need to make the non-existence proof for
the MemTable because an attacker cannot access the skip list.
If the KV store finds a key in the MemTable and the existence
proof is correct, i.e., the calculated hash value is equal to the
stored hash value, the value is returned to the client. If the
proof is incorrect, the client is informed that the MemTable
is corrupted. Since the MemTable can be reconstructed from
the WAL, the client can then instruct the SPEICHER to recreate
the KV store state in the case of an incorrect proof.

When the key is not found in the MemTable, the next level
is searched. All levels below the MemTable are stored in SSTa-
bles. The SSTable files are organized in a way that no two
SSTables in the same level have an overlapping key-range. Ad-
ditionally, all the keys are sorted within an SSTable file. Due to
this, any given key can only exist in one position in one SSTable
file per level. This allows SPEICHER to construct a Merkle tree
on top of the SSTable files of a level. With the ordering inside
the SSTable, SPEICHER can correlate a block in the file with the
key. This allows SPEICHER to calculate a hash over this block,
which then can be checked against the stored hash in the footer.
The hash of the footer can then be checked against the Merkle
tree over the SSTable files in that level. It gives SPEICHER the
proof of non-/existence for the lookup, and possibly the value
belonging to the key. If the proof fails, the client is informed.
In contrast to an incorrect proof in the MemTable, SPEICHER
is not able to recover from this problem since the data is stored
on the untrusted storage medium. If SPEICHER finds the KV
pair and the proof is correct, it returns the value to the client. If
the key does not exist, that is SPEICHER could not find it in any
level and all level proofs are correct, an empty value is returned.

The freshness of data is guaranteed either by checking the
value against the securely stored hash in the EPC for the case
where the key has been found in the MemTable, or by checking
the hash values of the SSTables against a Merkle tree. Addi-
tionally, as any key can only be stored in one position within a
level, SPEICHER can also check against deletion of the key in
a higher level, which is also necessary to guarantee freshness.

III: Range queries. Range queries are used to access all KV
pairs, with a key greater than or equal to a start key and lesser
than an end key (see Algorithm 3). To find the start KV pair, we
need to do the same operation as in get requests. Furthermore,
it requires to initialize an iterator in each level, pointing to the
KV pair with a key greater or equal to the starting key. These
iterators are necessary as higher levels have the more recent
updates, due to keys being inserted into the highest level and

being compacted over time to the lower levels, and lower being
larger in size and therefore having more KV pairs. If the next
KV pair is requested the next key of all iterators is checked
and the iterators with the smallest next key are forwarded.

In case the next key is in multiple levels, the highest level KV
pair is chosen. Therefore, SPEICHER has to do a non-/existence
proof at all the levels, before it returns the chosen KV pair. If
any of these proofs fails, the client is informed about the failed
proof. Identical to the get operation, the client can then decide
to either restore the KV store or to restore a backup.

Similar to the get operation, the hash value stored in
the EPC and the Merkle tree over the SSTables are used to
guarantee the freshness of the returned values.

IV: Iterators. Iterators work identical to the range queries;
they just have a different interface (see Algorithm 4).

V: Restore. After a reboot, the KV store has to restore its last
state (see Algorithm 5). This process is performed in two steps,
first collecting all files belonging to the KV store, and then
replaying all changes to the MemTable. In the first step the
Manifest file is read. It contains all necessary information
about the other files, such as live SSTable files, live WAL
files, smallest key of each SSTable file. Each changing event
about the live file is logged into the Manifest by appending a
record describing the event. Therefore, at a restore all changes
committed in the Manifest have to be replayed. This means
that the SSTable files have to be put in the correct level. Each
record in the Manifest is integrity-checked by a hash, and the
freshness is guaranteed by the trusted counter for the Manifest.
Since the counter value is incremented in a deterministic
way, SPEICHER can use this value to check if all blocks are
present in the Manifest. After the SSTable files in the levels are
restored, and the freshness of all the SSTable files is checked
against the Manifest by comparing the hash with the hash
stored in the Manifest, the WAL is replayed.

Since each put operation is persisted in the WAL before
it is written into the MemTable, replaying the put operations
from the WAL allows SPEICHER to reconstruct the MemTable
at the moment of the shutdown. Each put in the WAL has
to be checked against the stored hash in the record, and the
stored counter value. Additionally, since the counter value of
the WAL is checked whether it equals to that of the Manifest
counter, SPEICHER can check for the missing records. Records
that have a counter value being in the future, i.e. a counter
value higher than the stored stable trusted counter value are
ignored at restore. Further, due to the deterministic increase of
the counter, SPEICHER can check against the missing records
in the log files. If in any of these steps one of the checks
fails, SPEICHER returns the information to the client, because
SPEICHER is not able to recover from such a state.

VI: Compaction. Compaction is triggered when a level holds
data beyond a pre-defined threshold in size. In compaction
(see Algorithm 6), a file from Leveln is merged with all
SSTable files in Leveln+1 covering the same key range. The



new SSTables are added to Leveln+1, while all SSTables in the
previous level are discarded. Before keys are added to the new
SSTable file, the non-/existence proof is done on the files being
merged. This is necessary to prevent the compaction process
from skipping keys or writing old KV to the new SSTable files.

Since hash values are calculated over blocks of the SSTable
files, a new block has to be constructed in the enclave memory,
before it is written to the SSD. Also, all hash values of the
blocks have to be stored in the protected memory until the
footer is written and a hash over the footer is created. The
file names of newly created SSTables and footer hashes are
then written to the Manifest file, with the new trusted counter
value. This is similar to the put operation. After the write
operation to the Manifest completes and the trusted counter
is incremented, the old SSTable files are removed from the KV
store and the new files are added to Leveln+1. Since the hash
values of the new SSTables are secured with a trusted counter
value in the Manifest file, the SSTables cannot be rolled back
after the compaction process.
3.4 Optimizations
Timer performance. As described in §3.2, in order to prevent
every request from blocking for the trusted counter increment,
we leverage asynchronous counters written in files whose
freshness is guaranteed by synchronous counters (or SGX
counters). We use one counter for the WAL and another for the
Manifest so that SPEICHER can operate on them independently.
Although this method drastically improves throughput by
allowing SPEICHER to process many requests without waiting
for the counter to be stable, it also poses on the client the need
for holding its write requests until the counter value is stable.
This is why we designed and implemented the interface of
AMC that reports the expected time for the counter to be stable.
Because of this interface, the client does not need to frequently
issue the requests to check the current stable counter value.
SPDK performance. SPDK is designed to eliminate system
calls from the data path, but in reality its data path issues
two system calls on every I/O request: one for obtaining the
process identifier and the other for obtaining the time. They are
executed once in an I/O request that covers multiple blocks and
their costs are normally amortized. However, since the context
switch to and from the enclave is an order of magnitude more
expensive, these costs are not amortized enough. We modified
them to obtain the values from a cache within the enclave that
are updated only at the vantage points. As a result, we achieved
25× improvements over the naive port of SPDK to the enclave.

4 Implementation
Direct I/O library. Our direct I/O library for shielded execu-
tion extends Intel SPDK. Further, the memory management
routines and the uio kernel module that maps the device mem-
ory to the user space are based on Intel DPDK [2]. Although the
device DMA target is configured outside the enclave, the SSD
device driver and library code, including BlobFS in which SPE-
ICHER stores RocksDB files, entirely run within the enclave.

We use SPDK 18.01.1-pre and DPDK 18.02. In SPDK, 56
LoC are added, and 22 LoC are removed. In DPDK, 138 LoC
are added and 72 LoC are removed. These changes were made
to replace the routines that cannot be executed in the enclave.

Trusted counters. AMCs are implemented using the Intel
SGX SDK. A dedicated thread continually checks if any
monotonic counter value has changed. If a counter value has
been incremented, the thread writes the current value to the
file. The storage engine can query the stable value of any of its
counters, i.e., the last value that has been written to disk. Note
that this value cannot be rolled back since it is protected by
the synchronous SGX monotonic counter. Overall, our trusted
counter consists of 922 LoC.

SPEICHER controller. The SPEICHER controller is based on
SCONE. We leverage the Docker integration in SCONE to seam-
lessly deploy SPEICHER binary on an untrusted host. Further,
we implemented a custom memory allocator for the storage
engine. The memory allocator manages the unprotected host
memory, and exploits RocksDB’s memory allocation pattern,
which allows us to build a lightweight allocator with just 119
LoC. Further, the controller employs our direct I/O library
on the data path, and the asynchronous syscall interface of
SCONE on the control path for system configuration. The con-
troller also implements a TLS-based remote attestation for the
clients [32]. Lastly, we integrated the trusted counter as a part
of the controller, and exported the APIs to the storage engine.

Storage engine. We implemented the storage engine by
extending a version of RocksDB that leverages SPDK. In
particular, we extended the RocksDB engine to run within
the enclave, also integrated our direct I/O library. Since the
RocksDB engine with SPDK does not support data encryption
and decryption, we also ported encryption support from the
regular RocksDB engine using the Botan Library [1] (1000
LoC). In addition to encrypting data files, we extended the
encryption support to ensure the confidentiality of the WAL
and Manifest files. We further modified the storage engine to
replace the LSM data structure and log files with our secure
MemTable, SSTables, and log files. Altogether, the changes in
RocksDB account for 5029 new LoC and 319 changed LoC.

MemTables. RocksDB as default uses a skip list for
MemTable. However, it does not offer any authentication
or freshness guarantees. Therefore, we replaced MemTable
with an authenticated data structure coupled with mechanisms
to ensure the freshness property. Our MemTable uses the
Inlineskiplist of RocksDB and replaces the value part of
the KV-pair with a node storing a pointer to and the size of the
value as well as an HMAC. For the en-/decryption as well as for
the HMAC we used OpenSSLs AES128 in GCM mode. This
results in a 16 B wide HMAC. This implementation consists
of 459 LoC. As discussed previously, we also implemented
MemTable with a native Merkle tree (1186 LoC) and a Merkle
tree with a prefix array (528 LoC). However, we did not use
them eventually since their performance was quite low.



SSTables. To preserve the integrity of the SSTable blocks,
we changed the block layer in RocksDB to calculate the
hash before it issues a write request to the underlying layer.
The hash is then cached until the file is flushed (258 LoC).
Thereafter, hashes of all blocks are appended to the file coupled
with the information about the total number of blocks, and
the hash of this footer. When a file is opened, our hash layer
loads the footer into the protected memory and calculates the
hash of the footer. It then compares the value against the hash
stored in the Manifest file. Only if these checks are passed,
it opens the corresponding SSTable file and normal operations
proceed. At reading, the hash of the block is calculated and
checked against the hashes stored in the protected memory
area, before the block data is handed to the block layer of
RocksDB. We further enabled AES128 encryption to ensure
the confidentiality of the blocks (188 LoC). The hashes used
in the SSTables are SHA-3 with 384 bit.
Log files. Log files including the WAL and the Manifest use
the same encryption layer as the SSTable files. However,
the validation layer is different, and comes before the block
layer since the operation requires knowledge of the record
size. While writing, the validation layer adds the hash and the
trusted counter value to the log files.

The validation layer uses the knowledge that log files
are only read sequentially at startup for restoring purpose.
Therefore, at the start up, the layer allows any action written in
the log file as long as the hash is correct, and the stored counter
increases as expected. At the end of the file, SPEICHER checks
if the stored counter is equal to the trusted counter. The last
record’s freshness is guaranteed through the trusted counter.
Integrity of all the records is guaranteed through the hash value
protecting also the stored counter value. This value can then
be checked against the expected counter value for that block.
Since the counter lives longer than the log files, the start record
value has to be secured too. In case of WAL, this is achieved
by storing the start counter value of the WAL in the Manifest.
The start record of the Manifest is implicitly secured, since
the record must describe the state of the entire KV store.

5 Evaluation
Our evaluation answers the following questions.
• What is the performance (IOPS and throughput) of the

direct I/O library for shielded execution? (§5.2)
• What is the impact of the EPC paging on the MemTable?

(§5.3)
• What are the performance overheads of SPEICHER in

terms of throughput and latency measurements? (§5.4)
• What is the performance of our asynchronous trusted

counter? And what stability guarantees it has to provide
to be compatible with modern KV stores? (§5.5)
• What is the I/O amplification overhead? (§5.6)

5.1 Experimental Setup
Testbed. We used a machine with Intel Xeon E3-1270 v5
(3.60 GHz, 4 cores, 8 hyper-threads) with 64 GiB RAM

Workload Pattern Read/Write ratio
A (default) Read-write 90R—10W
B Read-write 80R—20W
C Read only 100R—0W

Table 1: RocksDB benchmark workloads.
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Figure 5: Performance of direct I/O library for shielded
execution vs native SPDK.

running Linux kernel 4.9. Each core has private 32 KiB L1 and
256 KiB L2 caches, and all cores share a 8 MiB L3 cache. For
the storage device our testbed uses a Intel DC P3700 SSD. The
SSD has a capacity of 400 GB and is connected over PCIe x4.

Methodology for measurements. We compare the perfor-
mance of SPEICHER with an unmodified version of RocksDB.
The native version of RocksDB does not provide any security
guarantees, i.e., it provides no support for confidentiality,
integrity and freshness of the data and query operations.

Importantly, we stress-test the system by running a client
on the same machine as the KV store. This is the worst-case
scenario for SPEICHER since the client is not communicating
over the network. Usually, the network slows down client’s
requests, and therefore, such an experimental setup is unable
to stress-test the KV store. We avoid this scenario by running
the client as part of the same process on the same host. This
eliminates further the need for enclave enters and exits, which
would add a high overhead, making a stress-test impossible.

Compiler and software versions. We used the RocksDB ver-
sion with SPDK support (git commit3c30815). We used SPDK
version 18.01.1-pre (git commit73fee9c), which we compiled
with DPDK version 18.02 (commit 92924b2). The native ver-
sion of SPDK/ DPDK and RocksDB was compiled with gcc
6.3.0 and the default release flags. The SPEICHER version
of SPDK/DPDK and RocksDB was compiled with the same
release flags but gcc version 7.3.0 of the SCONE project.

RocksDB benchmark suite. We use the RocksDB benchmark
suite for the evaluation. In particular, we used the db_bench
benchmarking tool which is shipped with RocksDB [5] and
Fex [52]. The benchmark consists of three workloads as
shown in Table 1. Workload A is the default workload.

5.2 Performance of the Direct I/O Library
We first evaluate the performance of SPEICHER’s I/O library
for shielded execution. The I/O library is designed to have fast
access to the persistent storage for accessing the KV pair stored



100 kB 1 MB 10 MB 100 MB 1 GB
Buffer size [MB]

101

102

103

104

105

Ti
m

e 
[s

]

90MB

Figure 6: Impact of the EPC paging on the MemTable.

on the SSD (§3.2). We run the performance measurement 20
times for every configuration of block size for the native execu-
tion and SPEICHER. Figure 5 shows the mean throughput and
IOPS with our I/O library and those with the native RocksDB-
SPDK with a confidence interval of 95%. We use Workload
B (80%R—20%W). Since the communication between SPDK
and the device is handled completely over DMA, our direct
I/O library does not suffer from context switches. Additionally,
due to storing the buffers outside of the enclave, we also do not
require expensive EPC paging, which would drastically reduce
the performance of the I/O library. Our performance evaluation
of the direct I/O library shows that it does not suffer from any
performance deprecation compared to the native SPDK setup.

5.3 Impact of the EPC paging on MemTable
We next study the impact of EPC paging on MemTable(s).
Note that a naive solution of storing a large or many MemTa-
bles in the EPC memory would incur high performance
overheads due to the EPC paging. Therefore, we adopted a
split MemTable approach, where we store only the keys along
with metadata (hashes and pointers to value) inside the EPC,
but the values are stored in the untrusted host memory (§3.3).
To confirm the overheads of the EPC paging on accessing a
large MemTable which are incurred in our rejected design,
we measure the overheads of accessing random nodes in a
MemTable completely resident in the enclave memory.

Figure 6 shows the performance overhead of accessing
memory within the SGX enclave. The result shows that as soon
as SGX has to page out MemTable memory from the EPC,
which happens at 96 MiB, the performance drops dramatically.
This is due to the en-/decryption and integrity checks employed
by the MEE in Intel SGX. Therefore, it is important for our
system design to keep the data values in the untrusted host
memory to avoid the expensive EPC paging. Our approach
of only keeping the key path of the MemTable inside the
EPC requires a small EPC memory footprint. Therefore, our
MemTable does not incur the EPC paging overhead.

5.4 Throughput and Latency Measurements
We next present the end-to-end performance of SPEICHER
with different workloads, value sizes and thread counts. We
measured the average throughput and latency for each of our
benchmarks. Figure 7 shows the measurement results as a

ratio of slowdown to the native SPDK-based RocksDB.

Effect of varying workloads. In the first experiment, we used
different workloads listed in Table 1. The workloads were
evaluated with 5 million KV pairs each. Each key was 16 B and
value was 1024 B. The benchmarks were run single threaded.

We get a throughput of 34.2k request/second (rps) for Work-
load A down to 20.8k rps for Workload C, while RocksDB
archived 512.8k rps or 676.8k rps respectively. The results
show that SPEICHER overheads 15×—32.5× for different
workloads. The overheads in Workloads A and B are mainly
due to the operations performed in the MemTable, since SPE-
ICHER has to encrypt the value and generate a cryptographic
hash for every write to the MemTable. Furthermore, for each
read operation the data has to be decrypted and the hash has to
be recalculated and compared to one in the Skip list. However,
even with AES-NI instructions, this decryption operation
takes at least 1.3 cycles/byte for encryption, limiting the
maximal reachable performance. The overhead in Workload
C is due to reading a very high percentile of the KV pairs
from the SSTable files, which uses currently an un-optimized
code path for en-/decryption and hash calculations. We expect
performance improvement by further optimizing the code path.

Effect of varying byte sizes. In the second experiment, we
investigate the overheads with varying value sizes, since it
changes the amount of data SPEICHER has to en-/decrypt and
hash for each request. We used the default Workload A, and
changed the value size from 64 B up to 4 KiB.

SPEICHER incurs an overhead of 6.7× for small value size,
i.e. 64 B, up to an overhead of 16.9× for values of size 4 KiB.
As in the previous experiment, the overhead is mainly domi-
nated by the en-/decryption and hash calculation for the values
in the MemTable. The benchmark shows a higher overhead
for larger value sizes, since the amount of data SPEICHER has
to en-/decrypt increases with the size of the values.

Effect of varying threads. We also investigated the scaling
capabilities of SPEICHER. For that we increased the number of
threads up to 8 and compared the overhead to native RocksDB
with the default Workload A. Note that the current SGX server
machine has 4 physical cores / 8 hyperthread cores.

In the test the overhead increased from around 13.6× for
two threads to 17.5× for 8 threads. This implies SPEICHER
scales slightly worse than RocksDB. This is due to less
optimal caching for random memory access in SPEICHER’s
memory allocator. SPEICHER has to manage two different
memory regions (host and EPC) for the MemTable, which
leads to sub-optimal caching. We plan to optimize our memory
allocator and data structures to exploit the cache locality.

Latency measurements. In the benchmarks, SPEICHER has
an average latency ranging from 16 µs for single threaded and
64 B value size up to 256 µs for 8 threads and 1024 B value
size, native RocksDB had for the same benchmark a latency
of 1.6 µs or 14 µs respectively. However, RocksDB’s best
latencies were in Workload C with an average of 1.5 µs.
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Figure 7: SPEICHER performance normalized to the native RocksDB (with no security): (a) different workloads with constant
value size of 1024 and constant number of threads, (b) varying value sizes, and (c) increasing number of threads.

KV store Default time for persistence (ms) Configurable
RocksDB 0 (flushing) yes
LevelDB 0 (non-flushing) yes
Cassandra 1000 yes
HBase 10000 yes

Table 2: Default time for data persistence in KV stores.

5.5 Performance of the Trusted Counter

The synchronous trusted counter rate of SGX is limited to one
increment at every 60 ms. This would limit our approach to
only 20 Put operations per second since each Put has to be
appended to the WAL, which requires a counter increment.
However, our latency suggest that we have a lot more put
operations to deal with. Even in our worse latency case with
256 µs per request we would expect 234.4 request per 60 ms,
with a write rate of 10% this would amount to 23.4 required
counter increases every possible sequential counter increase.
In practice SPEICHER should reach far higher update rates as
this calculation used worst case values from our benchmarks.

Table 2 shows the time before different KV stores guarantee
that the values are persisted. We argue that these times can be
used to hide the stability time of our asynchronous counters,
which is a maximum of 60 ms. This is far less than the
maximum time to persist the data in the default configuration
of Cassandra and HBase. If the client expects the value is
persisted only after a specific period of time, we can relax our
freshness guarantees to match to the same time window.

5.6 I/O Amplification

We measured the relative I/O amplification increase in data
for SPEICHER compared to the native RocksDB. We report
the I/O amplification results using the default workload (A)
with the key size of 16 B and value size of 4 KiB. We observed
an overhead of 30% for read and write in the I/O amplification.
This overhead mainly comes from the footer we have to add to
each SSTable as well as from the hashes and counter values we
have to add to the log files. This overhead is not only present
in the write case but also in the read, as the additional data has
also to be read to be able to verify the files.

6 Related Work
Shielded execution. Shielded execution frameworks provide
strong security guarantees for legacy applications running
on an untrusted infrastructure. Prominent examples include
Haven [10], SCONE [8], Graphene-SGX [75], Panoply [69],
and Eleos [55]. Recently, there has been a significant interest
in designing secure systems based on shielded execution, such
as VC3 [68], Opaque [82], Ryoan [27], Ohrimenko et al. [51],
SGXBounds [36], etc. However, these systems are primarily
designed to secure stateless computation and data. (Pesos [34]
is an exception, see the policy-based storage systems section
for the details.) In contrast, we present the first secure persistent
LSM-based KV storage system based on shielded execution.
I/O for shielded execution. To mitigate the I/O overheads in
SGX, shielded execution frameworks, such as Eleos [55] and
SCONE [8], proposed the usage of an asynchronous system call
interface [70]. While the asynchronous interface is sufficient
for the low I/O rate applications—it can not sustain the perfor-
mance requirements of modern storage/networked systems. To
mitigate the I/O bottleneck, ShieldBox [73] proposed a direct
I/O library based on Intel DPDK [2] for building a secure
middlebox framework. Our direct I/O library is motivated
by this advancement in the networking domain. However, we
propose the first direct I/O library for shielded execution based
on Intel SPDK [28] for the I/O acceleration in storage systems.
Trusted counters. A trusted monotonic counter is one of
the important ingredients to protect against rollback and
equivocation attacks. In this respect, Memoir [57] and
TrInc [40] proposed the usage of TPM-based [74] trusted
counters. However, TPM-based solutions are quite impractical
because of the architectural limitations of TPMs. For instance,
they are rate-limited (only one increment every 5 seconds) to
prevent wear out. Therefore, they are mainly used for secure
data access in the offline settings, e.g., Pasture [33].

Intel SGX has recently added support for monotonic
counters [3]. However, SGX counters are also quite slow,
and they wear out quickly (§3). To overcome the limitations,
ROTE [45] proposed a distributed trusted counter service
based on a consensus protocol. Likewise, Ariadne [71]



proposed an optimized technique to increment the counter by
a single bit flip. Our asynchronous trusted counter interface is
complimentary to these synchronous counter implementations.
In particular, we take advantage of the properties of modern
storage systems, where we can use these synchronous counters
to support our asynchronous interface.
Policy-based storage systems. Policy-based storage systems
allow clients to express fine-grained security policies for
data management. In this context, a wide range of storage
systems have been proposed to express client capabilities [22],
enforce confidentiality and integrity [21], or enable new
features that include data sharing [44], database interface [46],
policy-based storage [19, 77], or policy-based data seal/unseal
operations [67]. Amongst all, Pesos [34] is the most relevant
system since it targets a similar threat model. In particular,
Pesos proposes a policy-based secure storage system based
on Intel SGX and Kinetic disks [31]. However, Pesos relies
on trusted Kinetic disks to achieve its security properties,
whereas SPEICHER targets an untrusted storage, such as an
untrusted SSD. Secondly, Pesos is designed for slow trusted
HDDs, where the additional overheads of the SGX-related
operations are eclipsed by slow disk operations. In contrast,
SPEICHER is designed for high-performance SSDs.
Secure databases/datastores. Encrypted databases, such as
CryptDB [60], Seabed [56], Monomi [76], and DJoin [50], are
designed to ensure the confidentiality of computation in un-
trusted environments. However, they are primarily for preserv-
ing confidentiality. In contrast, SPEICHER preserves all three
security properties: confidentiality, integrity, and freshness.

EnclaveDB [61] and CloudProof [59] target a threat model
and security properties similar to SPEICHER. In particular,
EnclaveDB [61] is a shielded in-memory SQL database.
However, it uses the secondary storage only for checkpoint
and logging unlike SPEICHER. Hence, it does not solve the
problem of freshness guarantee for the data stored in the
secondary storage. Furthermore, the system implementation
does not consider the architectural limitations of SGX.
Secondly, CloudProof [59] is a key-value store designed for
untrusted cloud environment. Unlike SPEICHER, it requires
the clients to encrypt or decrypt data to ensure confidentiality,
as well as to perform attestation procedures with the server,
introducing a significant deployment barrier.

TDB [43] proposed a secure database on untrusted storage.
It provides confidentiality, integrity, and freshness using
a log-structured data store. However, TBD is based on a
hypothetical TCB, and it does not address many practical
problems addressed in our system design.

Obladi [17] is a KV store supporting transactions while hid-
ing the access patterns. While it can effectively hide the values
and their access pattern against the cloud provider, it needs a
trusted proxy. In contrast, SPEICHER does not rely on a trusted
proxy. Furthermore, Obladi does not consider rollback attacks.

Lastly, in parallel with our work, ShieldStore [30] uses a
Merkle tree to build a secure in-memory KV store using Intel

SGX. Since ShieldStore is an in-memory KV Store, it does not
persist the data using the LSM data structure unlike SPEICHER.
Authenticated data structures. Authenticated data struc-
tures (ADS) [47] enable efficient verification of the integrity of
operations carried out by an untrusted entity. The most relevant
ADS for our work is mLSM [63], a recent proposal to provide
integrity guarantee for LSM. In contrast to mLSM, our system
provides stronger security properties, i.e., we ensure not only
integrity, but also confidentiality and freshness. Furthermore,
our system targets a stronger threat model, where we have to
design a secure storage system leveraging Intel SGX.
Robust storage systems. Robust storage systems provide
strong safety and liveness guarantees in the untrusted cloud en-
vironment [14, 42, 79]. In particular, Depot [42] protects data
from faulty infrastructure in terms of durability, consistency,
availability, and integrity. Likewise, Salus [79] proposed
a block store robust storage system while ensuring data
integrity in the presence of commission failures. A2M [14]
is also a robust system against Byzantine faults, and provides
consistent, attested memory abstraction to thwart equivocation.
In contrast to SPEICHER, this line of work neither provides
confidentiality nor freshness guarantees.
Secure file systems. There is a large body of work on
software-based secure storage systems. SUNDR [41], Plu-
tus [29], jVPFS [80], SiRiUS [23], SNAD [48], Maat [38] and
PCFS [21] employ cryptography to provide secure storage in
untrusted environments. None of them protect the system from
rollback attacks, and our challenges to overcome overheads
of shielded execution are irrelevant for them. Among all,
StrongBox [18] provides file system encryption with rollback
protection; however, it does not consider untrusted hosts.

7 Conclusion
In this paper, we presented SPEICHER, a secure persistent
LSM-based KV storage system for untrusted hosts. SPEICHER
targets all the three important security properties: strong confi-
dentiality and integrity guarantees, and also protection against
rollback attacks to ensure data freshness. We base the design of
SPEICHER on hardware-assisted shielded execution leveraging
Intel SGX. However, the design of SPEICHER extends the
trust in shielded execution beyond the secure enclave memory
region to ensure that the security properties are also preserved
in the stateful setting of an untrusted storage medium.

To achieve these security properties while overcoming the ar-
chitectural limitations of Intel SGX, we have designed a direct
I/O library for shielded execution, a trusted monotonic counter,
a secure LSM data structure, and associated algorithms
for storage operations. We implemented a fully-functional
prototype of SPEICHER based on RocksDB, and evaluated the
system using the RocksDB benchmark. Our experimental eval-
uation shows that SPEICHER achieves reasonable performance
overheads while providing strong security guarantees.
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8 Appendix
In this appendix, we present the pseudocode for all data
storage and query operations in SPEICHER.

Algorithm 1: Put algorithm of SPEICHER

Input: KV-pair which should be inserted into the store.
Result: Freshness of MemTable
/* Generating a block with the trusted counter */
hashBlock←hash(KV,counterWAL+1);
block←encrypt(KV,counterWAL+1,hashBlock);
/* Writing the block to the persistent storage, before

the trusted counter gets incremented */
writeWAL(block);
counterWAL←counterWAL+1;
/* Generating hash over the KV-pair for the Memtable */
hashKV←hash(KV );
/* Trying to insert into the memtable, if the memtable is

corrupted return a failure */
f reshness←putIntoMemtable(KV,hashKV );
return freshness

Algorithm 2: Get algorithm of SPEICHER

Input: Key in the format of the KV-store
Result: Freshness of the KV-pair and Value
for level=0 to numbero f levels do /* Check in each level if

key-value is existend, from highest to lowest */

if level=Level0 then /* First level lookup therefore
lookup in MemTable */

path,value←lookupMemtable(key) /* It is
possible that the value is empty, however we
still have to do a proof of non-existence */

foreach node∈ path do /* Validate hash values of
the trace to the leaf node */

if hash(node.le f t,node.right) 6=node.hash then
/* check that the hash value of the child
nodes is equal to the stored hash value */

/* The integrity and freshness proof
failed */

return staleMemTable,value
end

end
return f resh,value

end
else /* Lookup in a level backup by SST files */

SST←findSSTFile(level,key) /* Lookup over
authentication structures similar to MemTable
*/

block,value←lookup(SST slevel ,key);
if hash(block) 6=
SST.hashBlock(block) or !freshness(SST ) then

return staleSST ,value
end
return f resh,value

end
end

Algorithm 3: Range query algorithm of SPEICHER

Input: KV-pair with the lowest key and callback method to the
client

/* Build an iterator pointing to the first KV-pair */
iterator←constructIterator(keymin);
next←True;
/* Call the provided function until the iterator is not

valid anymore or a freshness proof failed or the
client request to end */

while isValid(iterator) and state= f resh and next do
state,value← Iterator.key_value;
next←callback(state,value);
Iterator← Iterator.next;

end

Algorithm 4: Iterator functions of SPEICHER

Input: Start key
Result: Result of freshness proof or iterator
Function constructIterator(keymin)

/* Build an iterator for each level of the LSM
pointing to the KV-pair or the next pair in the
level */

foreach level∈Level do
iteratorlevel←lowerBound(level,key);
if iteratorlevel .state 6= f resh then

return state
end
iterator.add(iteratorlevel);

end
end
Input: iterator
Result: Iterator points to the next KV-pair and freshness of the

iterator
Function next(iterator)

/* Forward all iterators pointing to the current key
*/

foreach iteratorlevel ∈ iterator where iteratorlevel .key=
iterator.key do

next(iteratorlevel);
if iteratorlevel .state 6= f resh then

return iteratorlevel .state
end

end
/* Find the level iterator pointing to the lowest key

*/
for i=0 to number_levels do

iter← iterator[i];
if iter.state 6= f resh then

return iter.state
end
if keylowest > iter.key then

keylowest← iter.key;
level← i

end
end
iterator.currentLevel(i);
return fresh

end



Algorithm 5: Restore algorithm of SPEICHER

Input: Manifest File
Result: Restored KV-store
/* Get the counter value of the first record in the

manifest and check that the first record is an inital
record */

counter←Mani f est. f irstCounterValue;
/* Iterate over all records in the Manifest */
foreach recordencrypted ∈Mani f est do

record←decrypt;
hash←hash(record);
/* Check the records hash and counter value, if they

do not match, report an error to the client */
if hash 6=record.hash then

return Hash does not match
end
if counter 6=record.counter then

return Counter does not match
end
/* If hash and counter match apply the change to the

KV-store */
apply(record);
inc(counter);

end
/* Check if the last counter in the Manifest matches the

trusted counter, if not report an error to the client
*/

if counter 6= tusted_counterMani f est then
return Counter does not match

end
/* Get the current WAL and its initial counter value from

the Manifest */
counter←Mani f est. f irstWALCounter;
/* Apply each record of the WAL to the KV if the counter

and hash are correct, similar to the Manifest */
foreach recordencrypted ∈WAL do

record←decrypt;
hash←hash(record);
if hash 6=record.hash then

return Hash does notmatch
end
if counter 6=record.counter then

return Counter does not match
end
apply(record);
inc(counter);

end
/* Check if the last counter value is the same as the

trusted counter */
if counter 6= trusted_counterWAL then

return Counter does not match
end
/* KV-store was successfully restored and no integrity

or rollbacks problem were found */
return Success

Algorithm 6: Compaction algorithm of SPEICHER

Input: SSTable file to be compacted one from leveln
Result: Multiple SSTable files for leveln+1
// Creating an Iterator over the higher level SSTable file create a new file
and a new data block
iteratorn←createIterator(SSTablen);
NewSSTable←createNewSST();
block←createNewBlock();
last_key←iteratorn.key−1;
// As long as their are KV-pairs remaining in the SSTable open the
SSTable file in the next level which has the range of the smallest possible
next key based on the last key compacted. while
has_next(iteratorn) do

SSTablen+1←findSSTFile(n+1,last_key+1);
iteratorn+1←createIterator(SSTablen+1);
// As long as the currently open SSTn+1 file has KV-pairs find the
smaller next key of SSTn and SSTn+1 file. If both have the same next
key choose from SSTn file.
while has_next(iteratorn+1i) do

iteratormin←min(iteratorn,iteratorn+1);
// test if the key value is still fresh, that is check the hash of the
block compare in the SSTable file hash footer and check
against the Manifest
if iteratormin 6= f resh then

// If the key value is not fresh return error to client
return iteratormin.state

end
// Add key to block, if the block is then over the size limit for
blocks calculate a hash add the hash to the footer of the new
file and write the block to persistent storage, and create a new
block
block.add(iteratormin.kv);
if size(block)>block_size_limit then

hash←hash(block);
encrypted_block←encrypt(block);
NewSSTable.write(encryptedblock);
NewSSTable.addHash(hash);
// If the file reaches the size limit after an append, write
the footer to the storage and create a new SSTable
if size(NewSSTable)>SSTable_size_limit then

NewSSTable.writeFooter();
NewSSTable←createNewSST();

end
block←createNewBlock;

end
last_key= iteratormin.key;
next(iteratormin);

end
end
// After compaction, flush the block & write the footer.
hash←hash(block);
encrypted_block←encrypt(block);
NewSSTtable.write(encrypted_block);
NewSSTable.addHash(hash);
NewSSTable.writeFooter();
// Write the changes to the Manifest file.
Manifest.remove(SSTn,SSTn+1inrangeofSSTn);
Manifest.add(∀NewSSTfile);
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