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Abstract Approximate computing has become a promising mechanism to trade off
accuracy for efficiency. The idea behind approximate computing is to compute over
a representative sample instead of the entire input dataset. Thus, approximate com-
puting — based on the chosen sample size — can make a systematic trade-off be-
tween the output accuracy and computation efficiency. Unfortunately, the state-of-
the-art systems for approximate computing primarily target batch analytics, where
the input data remains unchanged during the course of computation. Thus, they
are not well-suited for stream analytics. This motivated the design of STREAMAP-
PROX— a stream analytics system for approximate computing. To realize this idea,
an online stratified reservoir sampling algorithm is designed to produce approximate
output with rigorous error bounds. Importantly, the proposed algorithm is generic
and can be applied to two prominent types of stream processing systems: (1) batched
stream processing such as Apache Spark Streaming, and (2) pipelined stream pro-
cessing such as Apache Flink.
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1 Introduction

Stream analytics systems are extensively used in the context of modern online ser-
vices to transform continuously arriving raw data streams into useful insights [18,
26, 39]. These systems target low-latency execution environments with strict service-
level agreements (SLAs) for processing the input data streams.

In the current deployments, the low-latency requirement is usually achieved by
employing more computing resources. Since most stream processing systems adopt
a data-parallel programming model [15], almost linear scalability can be achieved
with increased computing resources. However, this scalability comes at the cost of
ineffective utilization of computing resources and reduced throughput of the sys-
tem. Moreover, in some cases, processing the entire input data stream would require
more than the available computing resources to meet the desired latency/throughput
guarantees.

To strike a balance between the two desirable, but contradictory design require-
ments — low latency and efficient utilization of computing resources — there is a
surge of approximate computing paradigm that explores a novel design point to re-
solve this tension. In particular, approximate computing is based on the observation
that many data analytics jobs are amenable to an approximate rather than the exact
output [16, 27]. For such workflows, it is possible to trade the output accuracy by
computing over a subset instead of the entire data stream. Since computing over a
subset of input requires less time and computing resources, approximate computing
can achieve desirable latency and computing resource utilization.

Unfortunately, the advancements in approximate computing are primarily geared
towards batch analytics [1, 22, 32], where the input data remains unchanged during
the course of computation. In particular, these systems rely on pre-computing a
set of samples on the static database, and take an appropriate sample for the query
execution based on the user’s requirements (i.e., query execution budget). Therefore,
the state-of-the-art systems cannot be deployed in the context of stream processing,
where the new data continuously arrives as an unbounded stream.

As an alternative, one could in principle repurpose the available sampling mech-
anisms in well-known big data processing frameworks such as Apache Spark to
build an approximate computing system for stream analytics. In fact, as a starting
point for this work, based on the available sampling mechanisms, an approximate
computing system is designed and implemented for stream processing in Apache
Spark. Unfortunately, Spark’s stratified sampling algorithm suffers from three key
limitations for approximate computing. First, Spark’s stratified sampling algorithm
operates in a “batch” fashion, i.e., all data items are first collected in a batch as
Resilient Distributed Datasets (RDDs) [38], and thereafter, the actual sampling is
carried out on the RDDs. Second, it does not handle the case where the arrival rate
of sub-streams changes over time because it requires a pre-defined sampling frac-
tion for each stratum. Lastly, the stratified sampling algorithm implemented in Spark
requires synchronization among workers for the expensive join operation, which im-
poses a significant latency overhead.



Approximate Computing for Stream Analytics 3

To address these limitations, this work designed an online stratified reservoir
sampling algorithm for stream analytics. Unlike existing Spark-based systems, the
algorithm performs the sampling process “on-the-fly” to reduce the latency as well
as the overheads associated in the process of forming RDDs. Importantly, the algo-
rithm generalizes to two prominent types of stream processing models: (1) batched
stream processing employed by Apache Spark Streaming [19], and (2) pipelined
stream processing employed by Apache Flink [18].

More specifically, the proposed sampling algorithm makes use of two techniques:
reservoir sampling and stratified sampling. It performs reservoir sampling for each
sub-stream by creating a fixed-size reservoir per stratum. Thereafter, it assigns
weights to all strata respecting their arrival rates to preserve the statistical quality
of the original data stream. The proposed sampling algorithm naturally adapts to
varying arrival rates of sub-streams, and requires no synchronization among work-
ers (see §3). Based on the proposed sampling algorithm, STREAMAPPROX—an ap-
proximate computing system for stream analytics—is designed.

2 Overview and Background

This section gives an overview of STREAMAPPROX (§2.1), its computational model
(§2.2), and its design assumptions (§2.3).

2.1 System Overview

STREAMAPPROX is designed for real-time stream analytics. In this system, the in-
put data stream usually consists of data items arriving from diverse sources. The
data items from each source form a sub-stream. The system makes use of a stream
aggregator (e.g., Apache Kafka [20]) to combine the incoming data items from dis-
joint sub-streams. STREAMAPPROX then takes this combined stream as the input
for data analytics.

STREAMAPPROX facilitate data analytics on the input stream by providing an
interface for users to specify the streaming query and its corresponding query bud-
get. The query budget can be in the form of expected latency/throughput guarantees,
available computing resources, or the accuracy level of query results.

STREAMAPPROX ensures that the input stream is processed within the specified
query budget. To achieve this goal, the system makes use of approximate computing
by processing only a subset of data items from the input stream, and produce an
approximate output with rigorous error bounds. In particular, STREAMAPPROX uses
a parallelizable online sampling technique to select and process a subset of data
items, where the sample size can be determined based on the query budget.
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2.2 Computational Model

The state-of-the-art distributed stream processing systems can be classified in two
prominent categories: (i) batched stream processing model, and (ii) pipelined stream
processing model. These systems offer three main advantages: (a) efficient fault
tolerance, (b) “exactly-once” semantics, and (c) unified programming model for
both batch and stream analytics. The proposed algorithm for approximate computing
is generalizable to both stream processing models, and preserves their advantages.
Batched stream processing model. In this computational model, an input data
stream is divided into small batches using a pre-defined batch interval, and each
such batch is processed via a distributed data-parallel job. Apache Spark Stream-
ing [19] adopted this model to process input data streams.
Pipelined stream processing model. In contrast to the batched stream processing
model, the pipelined model streams each data item to the next operator as soon as
the item is ready to be processed without forming the whole batch. Thus, this model
achieves low latency. Apache Flink [18] implements this model to provide a truly
native stream processing engine.

Note that both stream processing models support the time-based sliding window
computation [5]. The processing window slides over the input stream, whereby the
newly incoming data items are added to the window and the old data items are
removed from the window. The number of data items within a sliding window may
vary in accordance to the arrival rate of data items.

2.3 Design Assumptions

STREAMAPPROX is based on the following assumptions. The possible means to
address these assumptions are discussed in §4.

1. There exists a virtual cost function which translates a given query budget (such as
the expected latency guarantees, or the required accuracy level of query results)
into the appropriate sample size.

2. The input stream is stratified based on the source of data items, i.e., the data items
from each sub-stream follow the same distribution and are mutually independent.
Here, a stratum refers to one sub-stream. If multiple sub-streams have the same
distribution, they are combined to form a stratum.

3 Design

In this section, first the STREAMAPPROX’s workflow (§3.1) is presented. Then, its
sampling mechanism (§3.2) and its error estimation mechanism (§3.3) are described
(see details in [31, 30]).



Approximate Computing for Stream Analytics 5

3.1 System Workflow

This section shows the workflow of STREAMAPPROX. The system takes the user-
specified streaming query and the query budget as the input. Then it executes the
query on the input data stream as a sliding window computation (see §2.2).

For each time interval, STREAMAPPROX first derives the sample size (sample-
Size) using a cost function based on the given query budget. Next, the system per-
forms a proposed sampling algorithm (detailed in §3.2) to select the appropriate
sample in an online fashion. This sampling algorithm further ensures that data items
from all sub-streams are fairly selected for the sample, and no single sub-stream is
overlooked.

Thereafter, the system executes a data-parallel job to process the user-defined
query on the selected sample. As the last step, the system performs an error estima-
tion mechanism (as described in §3.3) to compute the error bounds for the approx-
imate query result in the form of out put± error bound. The whole process repeats
for each time interval as the computation window slides [6].

3.2 Online Adaptive Stratified Reservoir Sampling

To realize the real-time stream analytics, a novel sampling technique called Online
Adaptive Stratified Reservoir Sampling (OASRS) is proposed. It achieves both strat-
ified and reservoir samplings without their drawbacks. Specifically, OASRS does
not overlook any sub-streams regardless of their popularity, does not need to know
the statistics of sub-streams before the sampling process, and runs efficiently in real
time in a distributed manner.

The high-level idea of OASRS is simple. The algorithm first stratifies the input
stream into sub-streams according to their sources. The data items from each sub-
stream are assumed to follow the same distribution and are mutually independent.
(Here, a stratum refers to one sub-stream. If multiple sub-streams have the same dis-
tribution, they can be combined to form a stratum.) The algorithm then samples each
sub-stream independently, and perform the reservoir sampling for each sub-stream
individually. To do so, every time a new sub-stream Si is encountered, its sample
size Ni is determined according to an adaptive cost function considering the spec-
ified query budget. For each sub-stream Si, the algorithm performs the traditional
reservoir sampling to select items at random from this sub-stream, and ensures that
the total number of selected items from Si does not exceed its sample size Ni. In ad-
dition, the algorithm maintains a counter Ci to measure the number of items received
from Si within the concerned time interval.

Applying reservoir sampling to each sub-stream Si ensures that algorithm can
randomly select at most Ni items from each sub-stream. The selected items from
different sub-streams, however, should not be treated equally. In particular, for a
sub-stream Si, if Ci > Ni (i.e., the sub-stream Si has more than Ni items in total
during the concerned time interval), the algorithm randomly selects Ni items from
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this sub-stream and each selected item represents Ci/Ni original items on average;
otherwise, if Ci ≤ Ni, the algorithm selects all the received Ci items so that each
selected item only represents itself. As a result, in order to statistically recreate the
original items from the selected items, the algorithm assigns a specific weight Wi to
the items selected from each sub-stream Si:

Wi =

{
Ci/Ni if Ci > Ni

1 if Ci ≤ Ni
(1)

STREAMAPPROX supports approximate linear queries which return an approxi-
mate weighted sum of all items received from all sub-streams. Though linear queries
are simple, they can be extended to support a large range of statistical learning algo-
rithms [11, 12]. It is also worth mentioning that, OASRS not only works for a con-
cerned time interval (e.g., a sliding time window), but also works with unbounded
data streams.
Distributed execution. OASRS can run in a distributed fashion naturally as it does
not require synchronization. One straightforward approach is to make each sub-
stream Si be handled by a set of w worker nodes. Each worker node samples an equal
portion of items from this sub-stream and generates a local reservoir of size no larger
than Ni/w. In addition, each worker node maintains a local counter to measure the
number of its received items within a concerned time interval for weight calculation.
The rest of the design remains the same.

3.3 Error Estimation

This section describes how to apply OASRS to randomly sample the input data
stream to generate the approximate results for linear queries. Next, a method to
estimate the accuracy of approximate results via rigorous error bounds is presented.

Similar to §3.2, suppose the input data stream contains X sub-streams {Si}X
i=1.

STREAMAPPROX computes the approximate sum of all items received from all
sub-streams by randomly sampling only Yi items from each sub-stream Si. As
each sub-stream is sampled independently, the variance of the approximate sum
is: Var(SUM) = ∑

X
i=1 Var(SUMi).

Further, as items are randomly selected for a sample within each sub-stream,
according to the random sampling theory [33], the variance of the approximate sum
can be estimated as:

V̂ar(SUM) =
X

∑
i=1

(
Ci× (Ci−Yi)×

s2
i

Yi

)
(2)

Here, Ci denotes the total number of items from the sub-stream Si, and si denotes
the standard deviation of the sub-stream Si’s sampled items:
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s2
i =

1
Yi−1

×
Yi

∑
j=1

(Ii, j− Īi)
2, where Īi =

1
Yi
×

Yi

∑
j=1

Ii, j (3)

Next, the estimation of the variance of the approximate mean value of all items
received from all the X sub-streams is described. This approximate mean value can
be computed as:

MEAN =
SUM

∑
X
i=1 Ci

=
∑

X
i=1(Ci×MEANi)

∑
X
i=1 Ci

=
X

∑
i=1

(ωi×MEANi)

(4)

Here, ωi =
Ci

∑
X
i=1 Ci

. Then, as each sub-stream is sampled independently, according

to the random sampling theory [33], the variance of the approximate mean value can
be estimated as:

V̂ar(MEAN) =
X

∑
i=1

Var(ωi×MEANi)

=
X

∑
i=1

(
ω

2
i ×Var(MEANi)

)
=

X

∑
i=1

(
ω

2
i ×

s2
i

Yi
× Ci−Yi

Ci

)
(5)

Above, the estimation of the variances of the approximate sum and the approx-
imate mean of the input data stream has been shown. Similarly, the variance of the
approximate results of any linear queries also can be estimated by applying the ran-
dom sampling theory.
Error bound. According to the “68-95-99.7” rule [37], approximate result falls
within one, two, and three standard deviations away from the true result with prob-
abilities of 68%, 95%, and 99.7%, respectively, where the standard deviation is the
square root of the variance as computed above. This error estimation is critical be-
cause it gives a quantitative understanding of the accuracy of the proposed sampling
technique.

4 Discussion

The design of STREAMAPPROX is based on the assumptions mentioned in §2.3.
This section discusses some approaches that could be used to meet the assumptions.
I: Virtual cost function. This work currently assumes that there exists a virtual cost
function to translate a user-specified query budget into the sample size. The query
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budget could be specified as either available computing resources, desired accuracy,
or latency.

For instance, with an accuracy budget, the sample size for each sub-stream can
be determined based on a desired width of the confidence interval using Equation 5
and the “68-95-99.7” rule. With a desired latency budget, users can specify it by
defining the window time interval or the slide interval for the computations over the
input data stream. It becomes a bit more challenging to specify a budget for resource
utilization. Nevertheless, there are two existing techniques that could be used to
implement such a cost function to achieve the desired resource target: (a) virtual
data center [3], and (b) resource prediction model [36] for latency requirements.

Pulsar [3] proposes an abstraction of a virtual data center (VDC) to provide per-
formance guarantees to tenants in the cloud. In particular, Pulsar makes use of a
virtual cost function to translate the cost of a request processing into the required
computational resources using a multi-resource token algorithm. The cost function
could be adapted for STREAMAPPROX as follows: a data item in the input stream is
considered as a request and the “amount of resources” required to process it as the
cost in tokens. Also, the given resource budget is converted in the form of tokens,
using the pre-advertised cost model per resource. This allows computing the sample
size that can be processed within the given resource budget.

For any given latency requirement, resource prediction model [36, 34, 35] could
be employed. In particular, the prediction model could be built by analyzing the
diurnal patterns in resource usage [13] to predict the future resource requirement
for the given latency budget. This resource requirement can then be mapped to the
desired sample size based on the same approach as described above.
II: Stratified sampling. This work currently assume that the input stream is already
stratified based on the source of data items, i.e., the data items within each stratum
follow the same distribution — it does not have to be a normal distribution. This
assumption ensures that the error estimation mechanism still holds correct since
STREAMAPPROX applies the Central Limit Theorem. For example, consider an IoT
use-case which analyzes data streams from sensors to measure the temperature of a
city. The data stream from each individual sensor follows the same distribution since
it measures the temperature at the same location in the city. Therefore, a straightfor-
ward way to stratify the input data streams is to consider each sensor’s data stream
as a stratum (sub-stream). In more complex cases where STREAMAPPROX cannot
classify strata based on the sources, the system needs a pre-processing step to stratify
the input data stream. This stratification problem is orthogonal to this work, never-
theless for completeness, two proposals for the stratification of evolving streams,
bootstrap [17] and semi-supervised learning [25], are discussed in this section.

Bootstrap [17] is a well-studied non-parametric sampling technique in statistics
for the estimation of distribution for a given population. In particular, the bootstrap
technique randomly selects “bootstrap samples” with replacement to estimate the
unknown parameters of a population, for instance, by averaging the bootstrap sam-
ples. A bootstrap-based estimator can be employed for the stratification of incoming
sub-streams. Alternatively, a semi-supervised algorithm [25] could be used to strat-
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ify a data stream. The advantage of this algorithm is that it can work with both
labeled and unlabeled streams to train a classification model.

5 Related Work

Over the last two decades, the databases community has proposed various ap-
proximation techniques based on sampling [2, 21], online aggregation [23], and
sketches [14]. These techniques make different trade-offs w.r.t. the output quality,
supported queries, and workload. However, the early work in approximate comput-
ing was mainly geared towards the centralized database architecture.

Recently, sampling-based approaches have been successfully adopted for dis-
tributed data analytics [1, 22, 32, 24, 29, 28]. In particular, BlinkDB [1] pro-
poses an approximate distributed query processing engine that uses stratified sam-
pling [2] to support ad-hoc queries with error and response time constraints. Like
BlinkDB, Quickr [32] also supports complex ad-hoc queries in big-data clusters.
Quickr deploys distributed sampling operators to reduce execution costs of paral-
lelized queries. In particular, Quickr first injects sampling operators into the query
plan; thereafter, it searches for an optimal query plan among sampled query plans
to execute input queries. However, these “big data” systems target batch processing
and cannot provide required low-latency guarantees for stream analytics.

IncApprox [24] is a data analytics system that combines two computing paradigms
together, namely, approximate and incremental computations [10, 9, 8] for stream
analytics. The system is based on an online “biased sampling” algorithm that uses
self-adjusting computation [4, 7] to produce incrementally updated approximate
output. Lastly, PrivApprox [29, 28] supports privacy-preserving data analytics using
a combination of randomized response and approximate computation. By contrast,
STREAMAPPROX supports low-latency in stream processing by employing the pro-
posed “online” sampling algorithm solely for approximate computing, while avoid-
ing the limitations of existing sampling algorithms.

6 Conclusion

This paper presents STREAMAPPROX, a stream analytics system for approximate
computing. STREAMAPPROX allows users to make a systematic trade-off between
the output accuracy and the computation efficiency. To achieve this goal, STREAMAP-
PROX employs an online stratified reservoir sampling algorithm which ensures the
statistical quality of the sample selected from the input data stream. The proposed
sampling algorithm is generalizable to two prominent types of stream processing
models: batched and pipelined stream processing models.
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