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Abstract—We introduce TEE-PERF, an architecture- and
platform-independent performance measurement tool for trusted
execution environments (TEEs). More specifically, TEE-PERF
supports method-level profiling for unmodified multithreaded
applications, without relying on any architecture-specific hard-
ware features (e.g. Intel VTune Amplifier), or without requiring
platform-dependent kernel features (e.g. Linux perf). Moreover,
TEE-PERF provides accurate profiling measurements since it
traces the entire process execution without employing instruction
pointer sampling. Thus, TEE-PERF does not suffer from sam-
pling frequency bias, which can occur with threads scheduled to
align to the sampling frequency.

We have implemented TEE-PERF with an easy to use in-
terface, and integrated it with Flame Graphs to visualize the
performance bottlenecks. We have evaluated TEE-PERF based
on the Phoenix multithreaded benchmark suite and real-world
applications (RocksDB, SPDK, etc.), and compared it with Linux
perf. Our experimental evaluation shows that TEE-PERF incurs
low profiling overheads, while providing accurate profile mea-
surements to identify and optimize the application bottlenecks in
the context of TEEs. TEE-PERF is publicly available.

I. INTRODUCTION

Hardware-assisted trusted execution environments (TEEs),
such as ARM TrustZone [9], Intel SGX [13], AMD SEV [8]
and RISC-V Keystone [26], provide an appealing way to build
secure applications for the untrusted computing environment.
In particular, TEEs are increasingly being used in the context
of shielded execution to build a wide-range of secure appli-
cations [10, 12, 20, 24, 28, 33]. Shielded execution aims to
provide strong confidentiality and integrity properties using a
hardware-protected secure memory region.

However, developing applications for TEEs is quite chal-
lenging. While building a secure application, the application
programmer not only has to preserve the confidentiality and
integrity guarantees provided by the TEE, but (s)he also needs
to ensure that the application achieves high performance.

Unfortunately, application performance profiling, i.e., to
understand the performance bottlenecks inside the TEEs is
quite difficult [16]. This is due to the fact that the application
performance significantly varies inside the TEE due to the
micro-architectural implementation details of the secure hard-
ware. For instance, the cost of random memory accesses in
TEEs significantly increases due to the memory encryption
engine, which usually operates at the granularity of cache
lines. Likewise, the cost of accessing memory beyond the se-
cure physical memory region (allocated in the main memory)
incurs very high performance overheads due to secure paging;
for example, the Intel SGX architecture supports EPC paging,
a mechanism to securely swap enclave pages to unprotected
host memory that can slow down application performance up

to 2000× [10]. In addition, the application suffers significant
performance cost when performing a context switch from
the normal world to the secure world of the TEE since the
hardware needs to ensure that the context switch does not leak
any information stored in the TEE, e.g. flushing or restoring
the translation lookaside buffer (TLB). Further, direct I/O
is forbidden inside TEEs, and therefore, the I/O operations
have to pass through some wrappers resulting in different
performance characteristics as a developer might expect.

To summarize, the micro-architectural implementation of
TEEs provides significant challenges for profiling applications
while designing high performance applications. Further, many
applications need to be profiled across different TEE platforms
since they are designed to operate across multiple platforms
and architectures. However, there is very little support for
performance debugging for TEE, as the conventional profiling
tools are either tightly coupled to specific architectures or
operating systems. For instance, Intel VTune Amplifier pro-
filer [5] is a proprietary profiler that is specifically designed
for the Intel architecture. perf [6] relies on the Linux kernel
infrastructure for the application profiling. SGX-perf [34] tar-
gets Intel SGX architecture specifically, and does not provide
method-level application profiling information.

To overcome the limitations of the existing profilers, we
propose TEE-PERF, a performance profiling tool for TEEs.
More specifically, TEE-PERF targets three design points:
• Generality: TEE-PERF provides an architecture- and

platform-independent profiling infrastructure.
• Transparency: TEE-PERF supports unmodified multi-

threaded applications with an easy-to-use interface.
• Accuracy: TEE-PERF provides accurate method-level

profiling, without resorting to the instruction sampling.
At a high-level, TEE-PERF is based on four straightforward

stages (see Figure 1). Firstly, the application is recompiled
using our compiler pass, which is used to transparently in-
ject profiling code in the application at the call and return
instructions. In the second stage, the recorder collects the
performance characteristics while the application is running
inside the TEE. The recorder relies on a (hardware- and
platform-independent) software counter to capture the appli-
cation performance profile. Next, the analyzer dissects the
recorded log to accurately report the method-level performance
characteristics. Lastly, we integrated TEE-PERF with Flame
Graphs [1] to visualize the bottlenecks.

We have implemented the TEE-PERF tool with an easy-
to-use interface for the application programmers. In addition,
TEE-PERF provides several additional design features: sup-
port for multi-threaded applications, call stack profiling, a rich
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Figure 1: TEE-PERF overview

declarative query interface, and selective code profiling.
We have experimentally evaluated TEE-PERF based on

the Phoenix multithreaded benchmark suite and real-world
applications. Our experimental evaluation shows that TEE-
PERF incurs low profiling overheads, while providing accurate
profile measurements compared with Linux perf. Further-
more, we showcase that TEE-PERF is able to identify and
optimize the application bottlenecks in the context of TEEs.
In particular, we have successfully used the tool to increase the
performance to near native performance of Intel’s SPDK [18]
running inside a SGX enclave.

II. DESIGN

A. Overview

In this section, we present the design of TEE-PERF.

Design goals and assumptions. The primary goal of TEE-
PERF is to build a performance measurement tool, which is
independent of the underlying operating systems and architec-
tures. Therefore, the tool should also be able to make these
measurements independent of the TEE implementation; i.e.,
different instruction sets (x86 or RISC) or versions (SGX
v1 or SGX v2). Since it is platform independent, we do not
require any performance counters or timer being available to
make introspection into the TEE. Further, we aim to support
unmodified multi-threaded applications with an easy-to-use
interface. TEE-PERF provides accurate time measurements
statistics at function level, which enables applications pro-
grammer to identify performance bottlenecks in the context of
TEEs. However, we assume that the application running inside
TEE is able to access the shared memory with a profiling
application (or the recorder) running natively on the host.
Additionally, the operating system must support multitasking,
i.e., it is able to run a process in the TEE and a process
natively outside in parallel. These assumptions hold for most
commercially available TEEs and operating systems. We also
think that these assumptions will also be valid for future TEEs,
which might have additional security features. Lastly, we note
that TEE-PERF is designed to be used in the development and
debugging phases. Therefore, we can accept the performance
overhead of an architecture independent software counter.

Design overview. Figure 1 shows the high-level architecture
of TEE-PERF. The tool consists of four main phases: (a)
compiler, (b) recorder, (c) analyzer, and (d) visualizer. The
compiler pass transforms the application to inject the profiling
code in the executable. The recorder sets up the application
in the TEE, while simultaneously initiating a process in

parallel, which runs natively outside the TEE. The recorder
also establishes the shared memory communication medium
between the two processes, and it maps a fast reasonable
accurate software counter into the TEE.

After the measurement phase, the analyzer dissects the
performance measurement log file collected in the recording
phase, and it maps the binary, using the debug symbols,
to correlate the jump addresses with functions. Thereby, it
associates the performance measurement profile at the granu-
larity of functions. Lastly, TEE-PERF is integrated with Flame
Graphs [1] to visualize the performance bottlenecks.

B. Design Details

We next detail the four stages of TEE-PERF.

Stage #1: Compiler. In the compiler phase, we recompile the
input application to inject profiling code, which collects the
necessary information for the analyzer. Further, it maps code
to the binary, and also sets up the communication wrapper for
the recorder. While recompiling, we instruct the compiler to
inject code at method call and return points. This is supported
by gcc and clang, with function instrumentation and header
inclusion in every compile unit before any other include.

The injected code will read a counter value from a suitable
source, like the software counter provided by the recorder, and
collect the address of the call or return. Further, the injected
code sets up a log, which is used to collect the performance
measurement. The log is set up before any of the measured
code is being executed. We can link the setup and tear down
code either statically or dynamically.

At a high-level, the log structure consists of the log header
and multiple log entries. Figure 2 (a) shows the log header
format. The header stores flags, version number of the log
structure, the memory address mapping of the shared memory,
the process ID of the profiled application, the maximum size
of the log structure, an index to the tail of the log for the next
log entry write, and a pointer to a well known function entry
(address of profiler).

The flags contain for example, if the measurement is cur-
rently active, and which events should be measured. These
flags are stored in a data structure, which can be atomically
read and written by the underlying hardware (HW) platform.
This allows to change the flags while the application is exe-
cuted, without introducing critical sections into the execution,
which could become a bottleneck and alter the performance
characteristics of the measured application. While the flags
can be changed during the execution, and thereby control
the recorder, the version number is used to support different

2



Log size

Process ID

Index of next write

Counter value

Active

64 63 01617

Address of pro�ler in memory

Version
Multi

thread
Flags

Thread ID

Call/Ret instr. address

Counter value
Call

/ Ret

64 63 0

(a) Log header format (b) Log entry format

Figure 2: Log format of TEE-PERF

log structure layouts in the analyzer and is static after it is
written once. Therefore, the version number does not have to
be accessible atomically.

The process ID is used to differentiate multiple runs or
multiple application from each other in the analyzing phase.
The maximum size of the log is determined at the beginning,
and afterwards it is immutable. It is used in the recorder to
know when the log is full, and for the analyzer to dismiss
records, which might be wrong at the end of the log.

The pointer to the tail of the log has to be incremented
atomically, and it stores the first position of the first empty
entry. Any thread which wants to write to the log executes
a fetch-and-add instruction on the pointer, guaranteeing that
each possible entry is only written once. Since the order
of call/returns is only important within the same thread, the
possibility of unfair access to the tail does not change the
result of the analyzer.

We also added a pointer to a method, which is added by
the recorder, to be able to easily determine the mapping offset
of relocatable code. This information is necessary to correlate
an instruction pointer (IP) with a function in the object and
DWARF file.

Each log entry itself consists of 4 data fields (see Figure 2
(b)), storing if the executed instruction was a call or return, the
current timestamp, the call or return address, and the threadID
of the thread executing the instruction. (We also support multi-
threaded applications (see §II-C), which means we also need
to record the thread ID as part of the recorded log.)

Stage #2: Recorder. The recorder is the run-time component
of TEE-PERF. It consists of two parts (See Figure 3): the code
injected in the compiler phase, and the recorder wrapper. The
recorder wrapper sets up a shared memory region between
the measured application and the wrapper. Since the shared
memory is mapped between the TEE and the host, it should
not increase the TEE’s memory, which is usually limited.

The linked in library maps the shared memory region into
the measured applications address space and announces its
position through a globally accessible variable. Furthermore,
the library will initialize the shared memory to a known state
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Figure 3: Recorder overview

before any of the records can be written.
When a call or return instruction is executed, the program

instead of jumping directly to the call/return address will
jump to the injected code, i.e. function instrumentation. The
instrumented code writes the address of the call/return target,
the type of the instruction: call or return, instruction together
with the current timestamp, and the threadID into the shared
memory (see the log entry in Figure 3). Since the log header
allows to increase the tail atomically, the injected code can
reserve a log entry in the shared memory before writing the
entry itself; thus, the writing process to the log is lock-free.
While we designed the log in such a way that it can be
used lock-free with atomic instructions, TEE-PERF does not
actually rely on the availability of these instruction and can use
alternative ways of synchronization. The tracing of call/return
address can be dynamically de-/activated by the user at any
time. Since TEE-PERF is designed for the development phase,
and not production environment, it is acceptable, that the
recorder leaks information into the host memory.

After the measurement, the recorder wrapper writes the
entire log to the persistent storage, allowing the analyzer
to read the log file. Additionally, the recorder process is
responsible for making the hardware counters accessible for
measurement. If no hardware counters are available, for the
TEE measurements, the recorder uses a software counter. This
software counter is implemented by a thread incrementing a
counter in a tight loop. While this sacrifices an entire core
to the counter, it also provides a fine and accurate enough
clock to be used for measurements. TEE-PERF does method-
level relative profiling, thus perfectly accurate counter are not
necessary. Furthermore, since the loop is very small and only
accesses the header of the log, the cache footprint is very
small, which should minimize the performance impact of the
counter incrementation on the measured application.

Stage #3: Analyzer. The analyzer reads the entire log file, and
thereafter, it groups the call and return entries together. The
grouping is done for each thread independently. Since a thread
ID is stored in each log entry, the analyzer is able to determine
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the run of each thread. We can then use the call and returns
to build a call stacks for each method. Furthermore, we have
the counter at the method entry and the method exit, using
this information the analyzer calculates the time spent in the
method. It is also able to subtract the time of the method called
by the method and infer the real time spent in the method.

Thereafter, it then adds the time of each function execution
together for each method. This information is then presented
in a sorted way to the programmer. Additionally, the analyzer
provides a rich declarative query interface (§II-C), which
allows to do more queries on the collected data, giving the
developer the tools to investigate further, e.g. which thread
called which method how often.

Stage #4: Visualizer. Lastly, we have integrated the output
of the analyzer with Flame Graph [1], a popular visualization
tool that allows identification of the most frequent code paths
quickly and accurately.

C. Additional Design Features

We next present the additional design features supported by
TEE-PERF.

Multithreading support. Our TEE-PERF tool supports per-
formance measurements of multi-threaded applications. To do
so, we extended the log file format by writing a threadID to the
log file. The analyzer can then reconstruct a progress flow of
each thread by sorting the log entries by the threadID. While
our tool cannot guarantee that each recorded method enter and
exit event is correctly ordered in the log, it can guarantee that
for each single thread, as the recorder holds the execution of
the thread until the corresponding log entry is written.

Note that the access to the log, while recording, is lock-
free, due to the append only nature and the use of atomic
instructions. Therefore, we keep the overhead of writing to
the log to a minimum.

Call stack. We further support full reconstruction of the call
stack. Since the recorder writes every method enter and exit
into the log, we are able to fully reconstruct the call stack of
every single call. This not only allows us to make accurate
timing calculation for every method, but also allows us to
support more complicated queries, e.g. performance depending
on the call history of a method.

Queries. After the analyzer has read the log, the user can issue
further queries. We support a rich query interface for analyzing
the log. The interface is based on the declarative Pandas API
for python. With these queries, we search for contention in the
code or dependencies of calls, which result in a high overhead.

Selective code profiling. We also support selective code
profiling. In particular, by selecting parts of the code, where
our tool injects the measurements it is possible to only measure
parts of the application. Therefore, we provide a systematic
knob to reduce the log size and selective code profiling.

III. IMPLEMENTATION

We next present the implementation details of TEE-PERF.

Compiler pass. We use compiler flags which are available
in gcc and clang for injecting profiling code in the
application. These flags are -finstrument-function,
adding a __cyg_profiler_func_enter and
__cyg_profiler_func_exit to function calls or
return instruction, respectively. Another feature we use
is the --include flag, allowing us to include a file in
every compilation unit. The included file has the code
necessary to write to the log. Therefore, the compiler
and/or linker should be able to inline these methods,
reducing their overhead further. The final step is to
link against the library containing the setup and tear
down code. A full compiler call is as follows: gcc
-finstrument-function --include=profiler.h
test.c -o test -lprofiler.

Recorder. The two parts of the recorder are the wrapper
and the code injected into the application. Since the recorder
should be platform agnostic it does not use any special
libraries. Therefore, it only depends on the libc. For compat-
ibility to most environments, it is written in C. Thereby, 389
LoC will be injected into the application, and the wrapper
consist of 230 LoC.

Importantly, the injected code has to prevent to be
measured itself, as this would result in an infinity
loop. We avert that from happening by adding the
__attribute__((no_instrument_function))
to all injected methods.

Analyzer. The analyzer runs offline and potentially on a dif-
ferent system, thus it is not constraint by the same portability
considerations as the recorder. Therefore, we implemented the
analyzer in Python 3 and used numpy and pandas for the
analysis of the log. Further, to reduce the implementation effort
the analyzer depends on UNIX tools: addr2line, readelf and
c++filt. We implemented the analyzer with 370 LoC.

In addition, we provide a query interface for analyzing the
logs. The query feature was implemented by starting the script
in interactive mode. After the script run through the user
can issue pandas queries on our data structures to find the
information relevant to the user.

Visualizer. We further provide visualization mechanism for
the developers to track the performance bottlenecks. Therefore,
we provide support for flamegraph for visualization. This
is directly implemented in the analyzer. Due to the already
existing analysis of the log structure, the Flame Graph output
could be implemented with as little as 15 LoC. We suspect
that other tooling support for visualization should be similarly
easy to port.

IV. EVALUATION

Our evaluation answers the following questions:

• What are the profiling overheads of TEE-PERF compared
to perf? (§IV-B)

• Does TEE-PERF detect performance optimization oppor-
tunities for applications running in the TEEs? (§IV-C)
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A. Experimental Setup

Experimental testbed. We used a machine with Intel Xeon
E3-1270 v5 (3.60GHz, 4 cores, 8 hyper-threads) with 64GiB
RAM running Linux kernel 4.9. Each core has private 32KiB
L1 and 256KiB L2 caches, and all cores share a 8MiB
L3 cache. For the storage device our testbed uses a Intel
DC P3700 SSD. The SSD has a capacity of 400GB and is
connected over PCIe x4.

Applications and compiler. We evaluated TEE-PERF with
applications from the Phoenix 2.0 multithreaded benchmark
suite [25]. In addition, we have evaluated TEE-PERF using
two real-world applications: (i) RocksDB [27] persistent key-
value storage: we evaluated RocksDB using the RocksDB
benchmark [7]; and (ii) Intel SPDK library [18] version for
high-performance direct I/O storage operation.

All native applications were compiled using gcc (Debian
6.3.0-18+deb9u1) compiler, and to compile the applications
with the profiler we used x86 64-linux-musl-gcc (GCC) 7.3.0.
We used compilers with the -O3 optimization flag.

Methodology. We used the Fex [23] framework to run the
experiments. For all measurements, we report the geometric
mean over 10 runs across all benchmarks.

B. Performance Overheads

We first present the profiling overheads of TEE-PERF
compared to perf. To measure the overheads, we used the
the Phoenix multithreaded benchmark suite running inside the
Intel SGX enclave using SCONE [10].

Figure 4 shows that the performance overheads of the
TEE-PERF vary significantly across benchmarks. The mean
overhead of our tool compared to perf is 1.9×. TEE-PERF
is in nearly all benchmarks slower than perf as the in-
ject code has to run on each method call and return. In
linear_regression TEE-PERF is around 8% faster than
perf. This is expected as this particular application is issuing
a low number of function calls, and is mainly performing
computation work inside one function, therefore, the injected
code is not executed often. However, perf still has to perform
context switches to sample the data periodically. The other
outlier is string_match, where we suffer a 5.7× overhead
compared to perf. This is due to a high number of function
calls, as a result the injected code in our tool is executed often
and producing a higher overhead.

We note that the performance debugging is not done in a
production environment, but in a development environment.
Therefore, even though the performance overheads are on the
slightly higher side, they are still quite reasonable considering
the useful insights provided for the application programmers.

We also measured the performance of RocksDB with
our tool and plotted it using the Flame Graph. Figure 5
shows the runtime of different method with the db_bench
tool. We run a random read write benchmark with 80%
reads. The Flame Graph shows that the benchmark
spent most of its time in getting a current timestamp
(rocksdb::Stats::Now) and generating random numbers
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Figure 4: Overhead of TEE-PERF compared to perf for the
Phoenix benchmark suite running in the Intel SGX TEE.

(rocksdb::RandomGenerator::RandomGenerator).
To increase the performance of RocksDB in the enclave, these
two functions either have to be removed from the critical
path, or have to be replaced.

C. Case-study: Performance Optimization of Intel SPDK

We next present a case-study of Intel SPDK [18], where we
used TEE-PERF to optimize the performance in the context
of Intel SGX. In particular, entering and exiting a TEE is
performance expensive because the hardware needs to perform
a secure context switch, e.g. TLB flush. This results in TEE
having huge overheads in tasks in which such operations are
frequent. One of these operations is I/O access since it requires
to make system calls, which cannot be made from within the
TEE since it could leak information to the outside. Due to
the overhead some applications like storage system struggle to
embrace the TEE technology. However, recent development in
high performance direct I/O libraries like Intel’s DPDK [4] and
SPDK [18] presents an opportunity to eliminate most system
calls in the critical path, making high-performance storage [19]
and network [31] application feasible for TEEs.

To show that TEE-PERF can be used to optimize big-
ger application, and to show the potential of TEE-PERF,
we ported SPDK to Intel SGX. We used the performance
benchmark tool which is shipped with SPDK, and measured
the performance of SPDK without further optimization inside
of SGX. The benchmark we run for measurements was a
random read write benchmark with 80% reads. We found
that the naively ported version suffered severely from running
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Figure 5: Flame Graph of RocksDB measured by TEE-PERF

inside the enclave. While native SPDK, running on the host
system, reached 223, 808 IOPS and a throughput of 874MiB
for 4KiB blocks, the naive unoptimized implementation only
accomplished 15, 821 IOPS and a throughput of 61.8MiB on
the same machine, and 4KiB blocks.

Figure 6 (top Flame Graph) shows the Flame Graph for the
unoptimized version of SPDK created with TEE-PERF. The
Flame Graph shows that the performance tool spends nearly
72% of its time in a system call to get the current process ID,
i.e. getpid. Further, 20% are spent in receiving the current
time stamp, i.e. rdtsc.

After we identified these bottlenecks using TEE-PERF, we
implemented a caching algorithm for the getpid systemcall,
return after the first call the result from the first. While caching
of the process ID is unproblematic, the same is not true for the
timestamp. We implemented a caching with correcting after a
specific amount of calls. This allowed us to reduce the time
spent in receiving a timestamp dramatically.

Figure 6 (bottom Flame Graph) shows the optimized call
stacks for SPDK plotted using TEE-PERF.

The optimization reduced the time spent in these two
methods, while reading and writing to nearly 0. And more time
can be spent in reading and writing part of the benchmark.

With the improvements we made the performance of SPDK
inside the enclave improved to native performance with
232, 736 IOPS and 909MiB per second in the same setup as
before. That is an improvement of the factor 14.7 × compared
to the naive unoptimized implementation. Our TEE-PERF tool
allowed us to easily detect and identify the bottlenecks of
SPDK inside the SGX enclave. After the identification of the
bottlenecks, we could easily implement the improvements,
which in turn do not suffer from the same performance
penalties added by running inside an SGX enclave.

V. RELATED WORK

To our knowledge, TEE-PERF is the first architecture and
platform agnostic performance measurement tool for TEEs.
We have developed the tool in the context of our Speicher [11]
project, a secure LSM-based storage system. As shown also

in the evaluation section, Linux perf [6] provides similar
insights by instrumenting CPU hardware registers but does
not offer a detailed log with the time spent on each function.
In addition, perf is restricted to the Linux environment,
and requires the availability of hardware counters. Intel’s
own VTune Amplifier [5], a proprietary commercial low level
analysis tool, offers various features including stack sampling
and thread profiling on SGX enclaves. In addition, it provides
the time spent on each subroutine down to instruction level but
relies on the existence of special HW features and is platform-
dependent. Nevertheless, Intel VTune Amplifier is restricted by
the target platform (only Intel CPUs). sgx-gdb [17] is debugger
extending GDB [2] for enclaves. It allows stack sampling,
which makes it possible to profile applications running in an
SGX enclave. However, sgx-gdb is restricted to Intel SGX and
Linux.

SGX-Perf [34] is a recently proposed profiler for Intel SGX.
It profiles the enclave enter and exit events. The primary func-
tion of SGX-perf is to analyze the cost of context switches in
the SGX enclaves. Unfortunately, SGX-Perf does not provide
method-level profiling, as supported by TEE-PERF. Further,
SGX-Perf specifically designed for Intel SGX, whereas TEE-
PERF is not limited to the Intel SGX architecture.

Another tool which works similarly to perf is Gprof [3], an
extension of the original Unix prof, which offers performance
analysis for Unix applications by sampling and instrumenting
code at compile time. It offers a flat profile of total execution
time, broken down by function, and a call graph, which shows
function invocations. However, contrarily to TEE-PERF, it
does not provide cross-platform support. Further, Flamegraph
allows better comprehension compared to call graphs.

LIKWID [32] proposed a low-level lightweight profiling
suite for the x86 architecture. However, it is tightly coupled
with the x86 architecture since it relies on the hardware
counters to provide the performance profiling metrics.

MemProf [21] and Memphis [22] provide profiling infor-
mation for the remote memory accesses of memory objects
on a NUMA architecture. These profilers are very important
to perform NUMA-specific optimizations for remote memory
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Figure 6: Flame Graphs for Intel SPDK running inside Intel SGX enclave plotted using TEE-PERF: (top) unoptimized version
of SPDK, and (bottom) optimized version of SPDK.

accesses, e.g. thread or page pinning to minimize the remote
memory accesses. However, both profilers rely on hardware-
specific counters, such as instruction-based sampling (IBS).
Further, they are tightly integrated with Linux perf to iden-
tify memory accesses. In contrast to MemProf and Memphis,
TEE-PERF does not require any architecture- and platform-
specific counters. Furthermore, our profiler is geared for the
trusted execution environments.

Coz [14] introduced causal profiling to locate optimization
opportunities in concurrent applications. The key idea in
Coz is to slowdown the execution to have the same relative
effect of virtually speeding up the code section. In this way,
it is able to identify causal relationship between two code
segments executing concurrently. Likewise, Coz, TEE-PERF
targets unmodified multi-threaded applications. In contrast to
Coz, TEE-PERF targets profiling applications running inside
the TEEs. More importantly, Coz also relies on Linux perf
to collect the program counter and user-space call stack. In
contrast, our approach is completely platform independent.

Inspector [29] proposed a data provenance library for
unmodified multithreaded applications to provide detailed
information about thread schedules, and memory accesses.
However, Inspector relies on Linux perf and Intel Processor
Trace (Intel PT) to provide these performance statistics. Our
approach does not require Intel PT to trace the execution.

Profilers for distributed systems, such as Conductor [35],
Fay [15], and Sieve [30], target the same research direction.

These systems provide detailed overview of performance bot-
tlenecks in the applications. However, these profilers target
distributed systems, and they are orthogonal to our work since
we are currently targeting single-node systems. Moreover, our
primary focus is on applications running inside the TEEs.

VI. CONCLUSION

In this paper, we presented TEE-PERF, an architecture-
and platform-independent profiler for TEEs. TEE-PERF sup-
ports unmodified multithreaded applications without relying
on TEE-specific hardware counters or platform-specific ker-
nel features. Further, TEE-PERF supports accurate method-
level profiling without employing instruction pointer sam-
pling. We have implemented TEE-PERF with an easy to use
interface, and integrated it with Flame Graphs to visualize
performance bottlenecks. We evaluated TEE-PERF based on
a multithreaded benchmark suite and real-world applications.
Our experimental evaluation shows that TEE-PERF incurs low
profiling overheads, while providing accurate profile measure-
ments compared to perf.
Software availability. TEE-PERF along with the entire ex-
perimental is available: https://github.com/mbailleu/tee-perf
Acknowledgements. We thank anonymous reviewers and our
shepherd Sara Bouchenak for their helpful comments. This
work was supported by the European Unions Horizon 2020 re-
search and innovation program under grant agreement 645011
(SERECA), Huawei Research, and the UK Research Institute
in Secure Hardware and Embedded Systems (RISE).

7

https://github.com/mbailleu/tee-perf


REFERENCES

[1] Flame Graphs. http://www.brendangregg.com/flamegraphs.
html.

[2] GDB: The GNU Project Debugger. https://www.gnu.org/
software/gdb/.

[3] GNU gprof. https://sourceware.org/binutils/docs/gprof/.

[4] Intel DPDK. http://dpdk.org/.

[5] Intel VTune Amplifier. https://software.intel.com/en-us/vtune.

[6] perf: Linux profiling with performance counters. https://perf.
wiki.kernel.org/index.php/Main Page.

[7] RocksDB Benchmarking Tool. https://github.com/facebook/
rocksdb/wiki/Benchmarking-tools.

[8] AMD. AMD Secure Encrypted Virtualization (SEV). https:
//developer.amd.com/sev/.

[9] ARM. Building a secure system using trustzone
technology. http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C trustzone
security whitepaper.pdf, 2009.

[10] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and
C. Fetzer. SCONE: Secure Linux Containers with Intel SGX.
In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[11] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani. SPEICHER: Securing lsm-based key-value stores
using shielded execution. In 17th USENIX Conference on File
and Storage Technologies (FAST), 2019.

[12] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications
from an Untrusted Cloud with Haven. In Proceedings of the
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[13] V. Costan and S. Devadas. Intel SGX Explained, 2016.

[14] C. Curtsinger and E. D. Berger. Coz: Finding code that counts
with causal profiling. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP), 2015.

[15] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu. Fay:
Extensible distributed tracing from kernels to clusters. In
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP), 2011.

[16] A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen.
Performance of trusted computing in cloud infrastructures with
intel sgx. In International Conference on Cloud Computing and
Services Science (CLOSER), 2017.

[17] Intel Software Guard Extensions SDK for Linux OS.
https://download.01.org/intel-sgx/linux-1.8/docs/Intel SGX
SDK Developer Reference Linux 1.8 Open Source.pdf. Last
accessed: Dec, 2018.

[18] Intel Storage Performance Development Kit. http://www.spdk.
io. Last accessed: Dec, 2018.

[19] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth,
P. Bhatotia, and C. Fetzer. Pesos: Policy enhanced secure object
store. In Proceedings of the Thirteenth EuroSys Conference
(EuroSys), 2018.

[20] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer. SGXBOUNDS: Memory Safety for

Shielded Execution. In Proceedings of the 12th ACM European
Conference on Computer Systems (EuroSys), 2017.

[21] R. Lachaize, B. Lepers, and V. Quéma. Memprof: A memory
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