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Data corruption

e Performance-critical systems =» in a low-level language (C/C++)

e Low-level language = no memory protection

o Applications are more vulnerable to hardware faults
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Data corruption
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Performance-critical systems =» in a low-level language (C/C++)

Low-level language = no memory protection

o Applications are more vulnerable to hardware faults

A pointer gets corrupted = stays undetected
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Overview

Problem:

e Existing solutions are expensive
o They harden the entire program

Approach:

e Partial protection for efficient fault-tolerance
o Protect only data pointers
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Hypothesis

Leverage the new ISA extensions in modern CPUs for fault tolerance
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Hypothesis

Leverage the new ISA extensions in modern CPUs for fault tolerance

Fault detection Fault recovery

Intel MPX Intel TSX

(Memory Protection Extension) (Transaction Sync Extensions)
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Fault detection via Memory Protection Extension

Intel MPX: Bounds checking in the H/W Memory

Insight: Pointer error will cause bound
violation with high probability @ e

|i Object bounds
Pointer
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Fault detection via Memory Protection Extension

Intel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound
violation with high probability
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Fault recovery using transactions

___________________

Intel TSX: Transactions for optimistic { Transaction
concurrency control |

Approach: add
. mul

e Detect faults using MPX
mov

e Use transactions for recovery
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Fault recovery using transactions

___________________

Intel TSX: Transactions for optimistic { Transaction
concurrency control |

add

Approach:
. mul ;
e Detect faults using MPX | |

e Use transactions for recovery [Mpx Jotects \J7= mov
a fault '
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Fault recovery using transactions

Intel TSX: Transactions for optimistic | Transaction  i<—
concurrency control L | Rollback the
! ! transaction
i dd | and re-execute
Approach: @ ;
. mul |
e Detect faults using MPX | i

e Use transactions for recovery [Mpx detects \J7 mov i—
a fault | |
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Performance overheads
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Performance overheads

100 - 7
9
e 75-
-
= lower
o 950-
-g better
s I .
> 0 O zm []

.. = [] v

I I I
blackscholes canneal ferret streamcluster vips mean

~ 50% slowdown on average
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Leverage the new ISA extensions for poeeee o
I Transaction —
fault tolerance: ; |
b j Rollback the }
| | transaction
. | dd '
e MPX: fault detection 8 }9 and re-execute
e TSX: fault recovery o
' mov —
. . MPX detects a . |
Improved efficiency: [fault o

e ~50% slowdown
o State-of-the-art full hardening - 100%
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Leverage the new ISA extensions for — —
I Transaction —
fault tolerance: |
! o ! j Rollback the }
' ! transaction
. | dd '
e MPX: fault detection @ }9 and re-execute
e TSX: fault recovery o
' mov —
. . MPX detects a . |
Improved efficiency: [fault o

e ~50% slowdown
o State-of-the-art full hardening - 100%

Thanks!

oleksii.oleksenko@tu-dresden.de
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Generic Solutions

There are solutions for full-program hardening:

e Thread- and process-level e Duplicated execution
redundancy o high performance overhead
o additional hardware o X2 onaverage

o i.e., more cores used

add

add add add
mul
mul mul
mul
mov mov mov

mov
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Approach

add ? Recover (TSX)
mul /

mov

Detect (MPX)
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