
DSN’16

Efficient Fault Tolerance 
using Intel MPX and TSX

Oleksii Oleksenko, 
Dmitrii Kuvaiskii, Pramod Bhatotia, Christof Fetzer

Pascal Felber



DSN’16

Data corruption

● Performance-critical systems ➜ in a low-level language (C/C++)

● Low-level language ➜ no memory protection

○ Applications are more vulnerable to hardware faults

2



DSN’16

Object

Data corruption 

Memory

Pointer

Object

Corrupted 
pointer

Corrupted 
object

2

Memory

● Performance-critical systems ➜ in a low-level language (C/C++)

● Low-level language ➜ no memory protection

○ Applications are more vulnerable to hardware faults

● A pointer gets corrupted ➜ stays undetected



DSN’16

Overview 

Problem: 

● Existing solutions are expensive
○ They harden the entire program

Approach:

● Partial protection for efficient fault-tolerance
○ Protect only data pointers

3



DSN’16

Hypothesis

4

Leverage the new ISA extensions in modern CPUs for fault tolerance



DSN’16

Hypothesis

4

Leverage the new ISA extensions in modern CPUs for fault tolerance

Fault detection

Intel MPX
(Memory Protection Extension)

Fault recovery

Intel TSX
(Transaction Sync Extensions)



DSN’16

Fault detection via Memory Protection Extension

Intel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound  
violation with high probability

5

Object bounds

Memory

Pointer



DSN’16

Fault detection via Memory Protection Extension

5

Object bounds

Corrupted 
pointer

MemoryIntel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound 
violation with high probability



DSN’16

Fault detection via Memory Protection Extension

5

Out-of-bound 
access

Object bounds

Corrupted 
pointer

MemoryIntel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound 
violation with high probability

Detected 
by MPX



DSN’16

Transaction

Fault recovery using transactions

Intel TSX: Transactions for optimistic 
concurrency control

Approach:

● Detect faults using MPX
● Use transactions for recovery

6

...

add

mul

mov

...



DSN’16

Transaction

...

add

mul

mov

...

Fault recovery using transactions

6

Intel TSX: Transactions for optimistic 
concurrency control

Approach:

● Detect faults using MPX
● Use transactions for recovery MPX detects 

a fault



DSN’16

Transaction

...

add

mul

mov

...

Fault recovery using transactions

6

Rollback the 
transaction 
and re-execute

Intel TSX: Transactions for optimistic 
concurrency control

Approach:

● Detect faults using MPX
● Use transactions for recovery MPX detects 

a fault



DSN’16

Performance overheads

7

lower
better



DSN’16

Performance overheads

7

lower
better



DSN’16

Performance overheads

7

~ 50% slowdown on average

lower
better



DSN’16

Summary

Leverage the new ISA extensions for 
fault tolerance:

● MPX: fault detection
● TSX:   fault recovery

Improved efficiency:

● ~ 50% slowdown
○ State-of-the-art full hardening - 100%

8

Transaction

...

add

mul

mov

...
MPX detects a 
fault

Rollback the 
transaction 
and re-execute



DSN’16

Summary

Leverage the new ISA extensions for 
fault tolerance:

● MPX: fault detection
● TSX:   fault recovery

Improved efficiency:

● ~ 50% slowdown
○ State-of-the-art full hardening - 100%

8

Transaction

...

add

mul

mov

...
MPX detects a 
fault

Rollback the 
transaction 
and re-execute

Thanks!

oleksii.oleksenko@tu-dresden.de



DSN’16 9



DSN’16

Backups

19



DSN’16

Generic Solutions

● Thread- and process-level 
redundancy
○ additional hardware
○ i.e., more cores used

● Duplicated execution
○ high performance overhead
○ x2 on average

add

mul

mov

add

mul

mov

add

mul

mov

add

mul

mov

20

There are solutions for full-program hardening:



DSN’16

Approach

21

...

add

mul

mov

Recover (TSX)

Detect (MPX)


