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Data corruption

● Performance-critical systems ➜ in a low-level language (C/C++)

● Low-level language ➜ no memory protection

○ Applications are more vulnerable to hardware faults
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Memory

● Performance-critical systems ➜ in a low-level language (C/C++)

● Low-level language ➜ no memory protection

○ Applications are more vulnerable to hardware faults

● A pointer gets corrupted ➜ stays undetected
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Overview 

Problem: 

● Existing solutions are expensive
○ They harden the entire program

Approach:

● Partial protection for efficient fault-tolerance
○ Protect only data pointers
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Hypothesis
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Leverage the new ISA extensions in modern CPUs for fault tolerance
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Hypothesis
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Leverage the new ISA extensions in modern CPUs for fault tolerance

Fault detection

Intel MPX
(Memory Protection Extension)

Fault recovery

Intel TSX
(Transaction Sync Extensions)
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Fault detection via Memory Protection Extension

Intel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound  
violation with high probability
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Fault detection via Memory Protection Extension
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Object bounds
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MemoryIntel MPX: Bounds checking in the H/W
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Fault detection via Memory Protection Extension
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Out-of-bound 
access

Object bounds

Corrupted 
pointer

MemoryIntel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound 
violation with high probability

Detected 
by MPX
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Transaction

Fault recovery using transactions

Intel TSX: Transactions for optimistic 
concurrency control

Approach:

● Detect faults using MPX
● Use transactions for recovery
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Intel TSX: Transactions for optimistic 
concurrency control

Approach:

● Detect faults using MPX
● Use transactions for recovery MPX detects 

a fault
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Transaction
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Fault recovery using transactions
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Rollback the 
transaction 
and re-execute

Intel TSX: Transactions for optimistic 
concurrency control

Approach:

● Detect faults using MPX
● Use transactions for recovery MPX detects 

a fault
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Performance overheads
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Performance overheads
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~ 50% slowdown on average
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Summary

Leverage the new ISA extensions for 
fault tolerance:

● MPX: fault detection
● TSX:   fault recovery

Improved efficiency:

● ~ 50% slowdown
○ State-of-the-art full hardening - 100%
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Summary
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Improved efficiency:
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Transaction

...

add

mul

mov

...
MPX detects a 
fault

Rollback the 
transaction 
and re-execute

Thanks!

oleksii.oleksenko@tu-dresden.de
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Backups
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Generic Solutions

● Thread- and process-level 
redundancy
○ additional hardware
○ i.e., more cores used

● Duplicated execution
○ high performance overhead
○ x2 on average
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There are solutions for full-program hardening:
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Approach
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Recover (TSX)

Detect (MPX)


