Efficient Fault Tolerance
using Intel MPX and TSX

Dmitrii Kuvaiskii, Pramod Bhatotia, Christof Fetzer

TECHNISCHE .
UNIVERSITAT
DRESDEN e UNM

Data corruption

e Performance-critical systems =» in a low-level language (C/C++)

e Low-level language = no memory protection

o Applications are more vulnerable to hardware faults

DSN'16 2

Data corruption

DSN'16

Performance-critical systems =» in a low-level language (C/C++)

Low-level language = no memory protection

o Applications are more vulnerable to hardware faults

A pointer gets corrupted = stays undetected

Memory

A

Memory

object

Pointer

Corrupted

pointer

Overview

Problem:

e Existing solutions are expensive
o They harden the entire program

Approach:

e Partial protection for efficient fault-tolerance
o Protect only data pointers

DSN'16 3

Hypothesis

Leverage the new ISA extensions in modern CPUs for fault tolerance

DSN'16 4

Hypothesis

Leverage the new ISA extensions in modern CPUs for fault tolerance

Fault detection Fault recovery

Intel MPX Intel TSX

(Memory Protection Extension) (Transaction Sync Extensions)

DSN'16 4

Fault detection via Memory Protection Extension

Intel MPX: Bounds checking in the H/W Memory

Insight: Pointer error will cause bound
violation with high probability @ e

|i Object bounds
Pointer

DSN'16 5

Fault detection via Memory Protection Extension

Intel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound
violation with high probability

DSN'16

Memory

Corrupted /
pointer

Fault detection via Memory Protection Extension

Intel MPX: Bounds checking in the H/W

Insight: Pointer error will cause bound
violation with high probability

DSN'16

Memory

Out-of-bound =5
access

pointer

Corrupted /

Detected
by MPX

Fault recovery using transactions

Intel TSX: Transactions for optimistic { Transaction
concurrency control |

Approach: add
. mul

e Detect faults using MPX
mov

e Use transactions for recovery

DSN'16

Fault recovery using transactions

Intel TSX: Transactions for optimistic { Transaction
concurrency control |

add

Approach:
. mul ;
e Detect faults using MPX | |

e Use transactions for recovery [Mpx Jotects \J7= mov
a fault '

DSN'16 6

Fault recovery using transactions

Intel TSX: Transactions for optimistic | Transaction i<—
concurrency control L | Rollback the
! ! transaction
i dd | and re-execute
Approach: @ ;
. mul |
e Detect faults using MPX | i

e Use transactions for recovery [Mpx detects \J7 mov i—
a fault | |

DSN'16 6

Performance overheads

[\]
(@)
1

100 - _
9
T 75-
-
= lower
o 950-
S better
3
%)

o
1

I I I I I
blackscholes canneal ferret streamcluster vips mean

DSN'16 7

Performance overheads

100 - -
3 e [Imrx
-
CE’ 907 =-|I;§t)i(mate ower
S better
8 25-
@ \4

0-

I I I I I
blackscholes canneal ferret streamcluster vips mean

DSN'16 7

Performance overheads

100 - 7
9
e 75-
-
= lower
o 950-
-g better
s I .
> 0 O zm []

.. = [] v

I I I
blackscholes canneal ferret streamcluster vips mean

~ 50% slowdown on average

DSN"16 7

Leverage the new ISA extensions for poeeee o
I Transaction —
fault tolerance: ; |
b j Rollback the }
| | transaction
. | dd '
e MPX: fault detection 8 }9 and re-execute
e TSX: fault recovery o
' mov —
. . MPX detects a . |
Improved efficiency: [fault o

e ~50% slowdown
o State-of-the-art full hardening - 100%

DSN'16 8

Leverage the new ISA extensions for — —
I Transaction —
fault tolerance: |
! o ! j Rollback the }
' ! transaction
. | dd '
e MPX: fault detection @ }9 and re-execute
e TSX: fault recovery o
' mov —
. . MPX detects a . |
Improved efficiency: [fault o

e ~50% slowdown
o State-of-the-art full hardening - 100%

Thanks!

oleksii.oleksenko@tu-dresden.de
DSN’16 8

DSN"16

Generic Solutions

There are solutions for full-program hardening:

e Thread- and process-level e Duplicated execution
redundancy o high performance overhead
o additional hardware o X2 onaverage

o i.e., more cores used

add

add add add
mul
mul mul
mul
mov mov mov

mov

DSN'16 20

Approach

add ? Recover (TSX)
mul /

mov

Detect (MPX)

DSN'16 21

