
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Avocado: A Secure In-Memory Distributed
Storage System

Maurice Bailleu, Dimitra Giantsidi, and Vasilis Gavrielatos, University of Edinburgh;
Do Le Quoc, Huawei Research; Vijay Nagarajan, University of Edinburgh;

Pramod Bhatotia, University of Edinburgh and TU Munich
https://www.usenix.org/conference/atc21/presentation/bailleu

Avocado: A Secure In-Memory Distributed Storage System

Maurice Bailleu1, Dimitra Giantsidi1
Vasilis Gavrielatos1, Do Le Quoc2∗, Vijay Nagarajan1, Pramod Bhatotia1,3

1University of Edinburgh 2Huawei Research 3TUMunich

Abstract

We introduce Avocado, a secure in-memory distributed
storage system that provides strong security, fault-tolerance,
consistency (linearizability) and performance for untrusted
cloud environments. Avocado achieves these properties
based on TEEs, which, however, are primarily designed
for securing limited physical memory (enclave) within a
single-node system. Avocado overcomes this limitation by
extending the trust of a secure single-node enclave to the
distributed environment over an untrusted network, while
ensuring that replicas are kept consistent and fault-tolerant
in a malicious environment.

To achieve these goals, we design and implementAvocado
underpinning on the cross-layer contributions involving the
network stack, the replication protocol, scalable trust estab-
lishment, and memory management. Avocado is practical:
In comparison to BFT, Avocado provides con�dentiality
with fewer replicas and is signi�cantly faster—4.5× to 65× for
YCSB read and write heavy workloads, respectively.

1 Introduction

In-memory distributed key-value stores (KVS) [8, 29–31,
40, 44, 45, 61, 66, 88, 106] have been widely adopted as the
underlying storage system infrastructure in the cloud because
(i) they support latency sensitive applications by keeping
data in main memory, and (ii) they are able to accommodate
large datasets beyond the memory limits of a single server
by adopting a scale-out distributed design.

At the same time, the transition to the cloud has increased
the risk of security violations in storage systems [77]. In
untrustedenvironments,anattackercancompromise thesecu-
rity properties of the stored data and query operations. In fact,
several studies [36,37,83] show that software bugs, con�gura-
tion errors, and security vulnerabilities pose a serious threat
to storage systems. Further, a malicious cloud operator or
co-located tenant, presents an additional attack vector [78,79].

To address these security threats, hardware-assisted
trusted execution environments (TEEs), such as Intel SGX [5],
ARM Trustzone [12], RISC-V Keystone [53, 76], and AMD-
SEV [10] provide an appealing way to build secure systems.
In particular, TEEs provide a hardware-protected secure
memory region whose residing code and data are isolated
from any layers in the software stack including the OS/

∗Do Le Quoc performed this work at TU Dresden.

hypervisor. Given this promise, TEEs are now commercially
o�ered by major cloud computing providers [23, 34, 60].

Although TEEs provide a promising building block for se-
curing systems againsta powerfuladversary, they also present
signi�cant challenges while designing a replicated secure
distributed storage system. The fundamental issue is that the
TEEs are primarily designed to secure the limited in-memory
state of a single-node system, and thus, the security properties
of TEEs do not naturally extend to a distributed infrastructure.
Therefore we ask the question: How can we leverage TEEs
to design a high-performance, secure, and fault-tolerant
in-memory distributed KVS for untrusted cloud environments?

In this work we introduceAvocado, a secure,distributed in-
memory KVS based on Intel SGX [5] as the foundational TEE
that achieves the following properties: (a) strong security, in
particular, con�dentiality—unauthorized reads are prevented,
and integrity—unauthorized changes to the data are detected,
(b) fault tolerance—the service continues uninterrupted in the
presence of faults, (c) consistency—strong consistency seman-
tics for a replicated store (linearizability), while protecting
against roll back and forking attacks and (d) performance—
achieving all of these without compromising performance.

To achieve the aforementioned properties, we need to
address the following four design challenges pertaining to the
network stack, the replication protocol, trust establishment,
and memory management in TEEs.

Firstly, in-memory distributed KVSs are increasingly build
on high-performance network stacks, where they bypass the
kernelusingdirect I/O[4,30,46]. Unfortunately,theprominent
I/O mechanism employed by TEE frameworks [13, 65, 72]
is based on asynchronous system calls [85], which exhibit
signi�cant overheads [104]. On the other hand, the direct I/O
mechanism is fundamentally incompatible with TEEs as the
data stored within the protected memory of TEEs cannot be
directly accessed via the untrusted DMA connection.

To address this challenge, we design a high-performance
network stack for TEEs based on eRPC [46]—it supports the
complete transport and session layers, while enabling direct
I/O within the protected TEE domain. Our network stack
outperforms asynchronous syscall by 66 % for iperf (§6.1).
Secondly, in-memory distributed KVSs rely on data repli-

cation for fault tolerance. To ensure replicas are consistent
in the presence of faults and adversary, a secure replication
protocol is deployed. While conventional wisdom requires the
employment of BFT protocols [20, 52], they are prohibitively

USENIX Association 2021 USENIX Annual Technical Conference 285

expensive for practical systems [22].

To overcome the limitation, we design a secure replication
protocol, which builds on top of any high-performance
non-Byzantine protocol [56,98]—ourkey insight is to leverage
TEEs to preserve the integrity of protocol execution, which al-
lows to model Byzantine behavior as a normal crash fault. Our
replication protocol o�ers linearizable reads and writes, and
outperforms BFT [87] by a factor of 4.5×—65×, while requiring
f fewer replicas and stronger security properties (§ 6.2).

Thirdly, a secure distributed system requires a scalable
attestation mechanism to establish trust between the servers
and clients. Unfortunately, the remote attestation mechanism
in TEEs is designed for establishing root of trust for a single
node [68] and it does not provide collective trust establish-
ment across the multiple nodes of a distributed system. More-
over, the attestation itself is based on Intel attestation service
(IAS) [3, 11], which su�ers from scalability and latency issues.

To address this, we design a con�guration and attestation
service (CAS) that ensures scalability and �exibility in a
distributed environment. Further, it provides con�guration
management, and improved performance of 18.3× compared
to Intel’s IAS attestation (§ 6.3).

And lastly, an in-memory distributed KVS requires fast
access to large amount of main memory on each server for
single-node KVS. Unfortunately, TEEs provide a limited se-
cure physical memory, and rely on prohibitively expensive
paging mechanism to access data beyond the physical limit.

To address this limitation, we design a novel single-node
KVS based on a partitioned skip list data structure, which
overcomes the memory limitations of TEEs, while supporting
lock-free scalable concurrent updates. Our KVS provides
fast lookup speed; 1.5×—9× faster than ShieldStore [48], a
state-of-the-art secure KVS for single-node systems (§ 6.4).

Based on these aforementioned four contributions, we
build Avocado as an end-to-end system from the ground-up,
and evaluate it using a real hardware cluster using the
YCSB [7, 24] workloads. Our evaluation shows that Avocado
is scalable and performs similar in read heavy and write heavy
workloads: Avocado su�ers only 50 % slowdown compared
to a non-secure distributed KVS (§ 6.5), which is an order of
magnitude better than the state-of-the-art secure distributed
storage systems providing strong consistency (§ 7).

Limitations:Avocado requires a large trusted computing
base (TCB) compared to other work using TEE to provided
secure replication [18, 25, 26]. While BFT protocols can
handle implementation errors, Avocado cannot and requires
the TCB to be implemented correctly. Further, we do not
aim to protect against side-channel attacks and access or
network pattern attacks [37, 49, 55, 105]. Protecting against
these attacks is outside of the scope of this work.

2 Background

2.1 Trusted computing

Trusted Execution Environments (TEEs) [5, 10, 12, 27, 76] are
tamper-resistant processing environments that guarantee the
authenticity, the integrity and the con�dentiality of their exe-
cuting code, data and runtime states, e.g. CPU registers, mem-
ory and others. Their content remains resistant against all
software attacks even from privileged code (OS, hypervisor).

SGX, Intel’s version of a TEE, o�ers the abstraction of an
isolated memory called enclave. Enclave pages reside in the
enclave page cache (EPC) — a speci�c memory region (up
to 128MiB for v1 and 256MiB for v2) which is protected by
an on-chip memory encryption engine (MEE). To support
applications with larger memory footprint SGX implements
a paging mechanism. However, the EPC paging mechanism
incurs high overheads [16, 65].

This isolation prohibits SGX applications from executing
outside-of-the-enclave code directly. Thus, enclave threads
need to exit the trusted environment and further copy all
associated data out of the enclave since kernel code cannot
access it. Afterwards, threads have to enter the enclave again.
We refer to this as world switch.

Our Avocado project leverages the advancements in
shielded execution frameworks; in particular, we use
Scone [13] to build a distributed storage system.
2.2 High-performance networking with eRPC

Traditionally the network stack and the I/O are handled
inside the OS kernel where conventional applications
perform system calls to send/receive messages. However,
context switches due to system calls present a bottleneck and
might sacri�ce performance [2, 38, 43, 86, 101]. Consequently,
approaches like RDMA and DPDK [4] are widely favorized
in high performance networking because they (i) can map a
device into the users address space, and (ii) replace the costly
context switches with a polling-based approach.

In ourwork,we build our network stack based on eRPC [46],
a state-of-the art general-purpose and asynchronous remote
procedure call (RPC) library for high-speed networking for
lossy Ethernet or lossless fabrics. eRPC uses a polling-based
network I/O along with userspace drivers, eliminating
interrupts and system call overheads from the datapath.

Lastly, eRPC provides us with a UDP stack, leverages
optimization techniques (e.g. zero-copy reception, congestion
control, etc.) while it remains generic; it supports a wide
range of transport layers such as RDMA, DPDK, and RoCE.

3 Systemmodel

Avocado divides the key space into shards. Each shard is
replicated over a con�gurable number of nodes, which are
connected over a high speed network. A client issuing a
Put, Get, or Delete operation selects the shard associated
with the key and chooses a request coordinator from the
list of nodes. The nodes will coordinate with each other

286 2021 USENIX Annual Technical Conference USENIX Association

to provide proof for the success of the operation. For Get
operations proofs of integrity, authenticity, consistency and
non-/existence need to be provided, too.
Data model. Avocado provides con�dentiality, integrity,
authenticity and strong consistency for the stored data.
Speci�cally, a server only acknowledges a request as long as
it can prove the following guarantees: 1) an adversary cannot
read or manipulate stored data, without the manipulation
being detected, 2) the servers can establish trust with each
other and the clients and 3) an operation always observes
the latest completed operation on the same key e.g., a Get
observes the latest Put.
Threatmodel.Avocado targets an extended threat model
beyond the conventional model assumed for single-node
shielded execution [17]. In line with the default threat model
of SGX, we assume that an adversary has full control over
the hardware and software stack of the provided system,
including OS and hypervisor. Further, the adversary has the
ability to gain full control over the network infrastructure
and can drop, delay, or manipulate network tra�c. In contrast
to BFT protocols, we assume that adversary cannot take
advantage of faults in the implementation of SGX or KVS.
Moreover, our work does not protect against side-channel
attacks [42, 49, 55, 62, 81, 97, 99, 100]. Avocado also does not
provide mechanisms against access pattern attacks [37, 105].
Lastly, we also do not protect against memory safety
vulnerabilities in our implementation [51, 63].
Fault model. We assume an asynchronous model with net-
workandcrash-stop failures. The networkcan be manipulated
by the attacker, thus, we assume that message transmission
delays can be unbounded, network packets can be reordered,
lost or duplicated. We do not assume the existence of syn-
chronized clocks. Individual processes might fail by crashing,
but do not operate in a Byzantine manner (because of trusted
execution in the nodes). Since the network is controlled by
the attacker, Avocado cannot provide any availability guar-
antees. However, as long as there is not a denial-of-service
attack on the network, Avocado will remain available while
a majority of processes remain alive (tolerating f failures).

4 Design

Avocado, as a distributed KVS, runs on a set of nodes, each
of which has to continuously guarantee the con�dentiality,
integrity and authenticity of the stored data as well as
the sent/received messages. As shown in Figure 1, each
node consists of four major components. On the top, a
con�guration and attestation service (CAS) runs to provide
and speed up the trust establishment between the nodes and
the clients. Additionally,Avocado guarantees fault tolerance
as well as consistency between the replicated nodes thanks
to an asynchronous replication protocol. We implement this
replication protocol using our secure network stack. Further,
the network stack securely sends and receives messages,
ensuring packet security. Finally, the single-node memory

Enclave memoryEnclave memory

Replication layer

Networking layer

Single-node KVS

Host memory

NIC memory

OS

Replication layer

Networking layer

Keys & metadata

Host memory

OS

Encrypted values

Buf Buf NIC

RxTx

Untrusted network

Node #1 Node #K

. . .

CASCAS CAS

Figure 1: System overview.

KVS stores the dataset, containing all user provided data and
ABD’s timestamps.

Following, we will discuss the four major components, i.e.
network stack, replication protocol, CAS, and in-memory
KVS, in more detail.
4.1 Network stack

Problem. High-performance networking based on direct
I/O mechanisms (e.g., RDMA and DPDK) is an essential
ingredient to design a distributed in-memory KVS. The
networking layer is imperative to support high-performance
synchronous replication. Unfortunately, mapping devices
into TEEs trusted memory is incompatible to the secu-
rity guarantees, since the device is untrusted. Direct I/O
mechanisms, however, depend on DMA.

Additionally, the synchronous socket syscall I/O is limiting
as it requires the expensive world switch in the TEEs (the
world switch is around 5.5× more expensive than a kernel
context switch; 10,170 cycles compared to 1,800 cycles [104]).

To prevent the expensive world switches, asynchronous
syscall mechanisms [85] have been adopted by shielded
execution frameworks, such as Scone [13] or Eleos [65].
Although the asynchronous syscall mechanism helps in
mitigating the expensive world switch in TEEs, it is not well-
suited for Avocado since the system call overhead as well
as copying data in/out the enclave memory are not avoided.
For example, in our evaluation in Section 6.1 we prove that
the exit-less asynchronous socket-based networking is poor
choice compared to a userspace approach for Avocado.
Solution. To overcome this limitation, we opted for a new
network stack based on the userspace direct I/O networking
approaches (e.g., RDMA and DPDK), o�ering a secure
implementation of the transport and session layer in the OSI

USENIX Association 2021 USENIX Annual Technical Conference 287

model. However, we need to tackle the fact that untrusted
resources/memory cannot be mapped into the enclave
memory. To address this, our network stack maps the DMA,
and message bu�ers into the untrusted host memory, which
is accessible by the enclave.

Shielded network stack. Forourshieldednetworkstack,we
use eRPC [46] on top of DPDK [4]. To strengthen Avocado’s
security properties and eliminate world switches,we also map
all eRPC’s and DPDK’s software stack to the enclave address
space by leveraging Scone. Therefore, the logic, i.e. code, lives
completely within the enclave while the networking bu�ers
(e.g. message bu�ers, network protocol bu�ers, Tx and Rx
queues) remain in host memory since SGX will not allow reg-
istering enclave memory to the NIC. As a result, we map un-
trustedhostmemorytobothNICandnetworkbu�ers required
by eRPC and we utilise hugepages memory of 2MB-pages to
boost packet processing (e.g. eliminate page walks, exploit
data locality, minimize swapping, and increase TLB hit rate).

As shown in Figure 2, the submission and reception of
requests and responses mandate the allocation of message
bu�ers. To transmit the message bu�er’s data, eRPC needs
to copy the data to a rte_mbufs in the Tx queue which is
allocated by DPDK library and also resides in hugepages area.
However, before that, a header that contains the transport
header, and metadata (request handler type, sequence
numbers, etc.) is added to the front of the packet. Speci�cally,
eRPC library adds the UDP protocol header while the DPDK
library is responsible for the Ethernet protocol header.

Upon a request’s reception, a speci�c handler for the
type of the request is invoked. The Rx queue’s elements are
pointers to the address of the received data. In case the packet
is smaller than the MTU (1500 B in our case), we perform
zero-copy reception by mapping the data address to the
message bu�er associated for that request. Our networking
stack splits big packages (> MTU) into a set of ordered MTU-size
smaller messages and delivers them in order—we guarantee
to order by unique monotonic sequence ids. The �rst
(sub)-message contains all the necessary metadata (e.g. the
size of the original message). That way, if a message is lost, our
library identi�es the missing part and only the lost message
is re-transmitted. Lastly, note that each user thread owns a
separate RPC object which owns distinct Tx and Rx queues
allowing that way multithreaded concurrent operations.

Encryption and message format. To sum up, Avocado
e�ciently eliminates the world switches, establishes a direct
communication with the device bypassing the kernel network
stack, attacks the limited enclave memory and promotes
parallelism. However, by putting these bu�ers outside
the hardware protected area, Avocado has to ensure the
integrity and con�dentiality for all network data. Towards
this direction, we implemented an en-/decryption library
(using hardware support for AES-GCM-128). Each call or
return from eRPC goes through this en-/decryption layer
which also checks the integrity of the transmitted data.

Enclave memory

AVOCADO buffers

Host memory

En/de-cryption library

/dev/hugepages Tx queues

Rx queues

Message
buffer

Message
buffer

::memcpy
rte_mbufs

ptrmapping (zero-
copy reception)

eRPC software stack
(RPCs, handlers, etc)

Enqueue
request

Receive
request

RPC1 RPC2 RPCN
DPDK library Upon reception,

call the request's
handler

Figure 2: Avocado’s network stack.

Package size KV & Lamport clockIV Key size
12B 8B 8B 8B 16B

OP MAC

Figure 3: Avocado’s message format.

Figure 3 shows the message format of our Avocado-
networking layer. For each transmitted packet, the encryption
layer builds a payload, which contains a 12 B IV, 8 B operation
identi�er, 8 B for the key size, 8 B for the size of the entire
package then the KV pair with the Lamport clock (§ 4.2). The
generated payload is followed by a 16 B MAC which is nec-
essary to prove the authenticity and integrity upon reception
in the remote host. The operation identi�er also contains
a unique id for the current request/response, allowing to
detect resend packages by an attacker. Replicas are trusted
and all replicas authenticate each other in the boot up step.
Further, they make a key exchange, therefore we can use this
together with the unique id to authenticate each message. By
encrypting and authenticating our packages we can deal with
security concerns raised for user space networking [84, 94].
Result. In Section 6.1 we show that our userspace shielded
network stack based on eRPC outperforms the kernel
approach based on sockets up to 1.66×.
4.2 Replication protocol

Problem. Distributed systems enforce consistency in the
face of faults through replication protocols that establish an
order of operations in a replicated environment, preventing
data corruption and loss. We strive for linearizability [39],
the strongest guarantee from a programmability perspective,
which mandates that each request appears to take e�ect
globally and instantaneously at some point between its
invocation and completion. Additionally, we strive to
provide two often contradictory properties: security and

288 2021 USENIX Annual Technical Conference USENIX Association

Protocols Linearizability Integrity Con�dentiality Replication factor Max compromised nodes

Non-Byzantine 7 7 7 2f +1 0
BFT 3 3 7 3f +1 f
BFT + TEEs 3 3 3 3f +1 All
Avocado 3 3 3 2f +1 All

Table 1: The landscape of replication protocols in the untrusted environment. This table compares theoretical systems with
di�erent protocols against Avocado. Thereby, all the systems utilize a secure single-node KVS, however only the execution of
BFT + TEE is protected. We assume f compromised nodes for linearizability, integrity and con�dentiality columns.

performance. Conventional wisdom suggests the use of BFT
protocols [20, 52] since they provide a secure consensus
protocol in a malicious environment. However, their perfor-
mance su�ers from their overly pessimistic assumptions. On
the other hand, non-Byzantine replication protocols, such
as ABD [14, 56], chain replication [98] or Raft [64], perform
better than BFT, but cannot tolerate a malicious environment.

Solution. Since Avocado assumes a malicious environment,
BFT [20, 52] protocols could be deployed to deal with mali-
cious responses. Prior work uses trusted components to in-
crease the performance of BFT protocols by detecting equivo-
cation [18,54]. However, our assumption of the system di�ers
from BFT. In contrast to BFT, we assume that enclaves will
respond correctly, preventing equivocation. Furthermore the
TEE is able to preserve the integrity of the protocol execution.
This allows us to modela Byzantine behavioras a normalcrash
fault. As a result, we can adopt a non-BFT replication proto-
col, which deals with crash faults. Thereby, our design greatly
increases the performance by avoiding the additional broad-
cast rounds required by BFT, while also reducing the required
nodes to tolerate f failures. In Table 1 we compare security
guarantees of di�erent protocols with and without TEEs.

In Avocado we build our replication protocol on the well
established multi-writer ABD [56] protocol. (From now on
“ABD”.) By choosing ABD, we can also guarantee protection
against forking and rollback attacks. ABD requires a majority
of nodes to acknowledge each operation, guaranteeing that
at least one replica involved in the operation has observed
the most recent operation on the same key. This further
guarantees liveness in case of network partitioning as long
as a majority of nodes are in the same partition. While we
do not change the replication-related behavior of the original
ABD protocol, we design a secure replication protocol based
on our network stack (§ 4.1). In the following we describe
the important operations of Avocado.

#I: Put. In a Put operation the client will determine, by
hashing the key and looking up the nodes, the set of nodes
responsible for the key. They, then, send thePut to a randomly
selected replica, which will act as the Put’s coordinator.

The chosen request’s coordinator will prepare it’s own KVS
by preparing the local put operation, however it will not make
the local put visible for other operations until the replicated
Put operation is completed. This reduces EPC pressure, since
the value doesn’t have to be cached in enclave memory before

it can be inserted into the nodes KVS. An example of the
Avocado’s Put request is shown in Figure 4. The coordinator,
�rst, executes the �rst of two broadcast rounds. All replicas
store the key-value along with its Lamport clock to determine
an order of operations. The Lamport clock consists of a
logical counter and a machine id. This id guarantees that only
one machine can generate a speci�c clock value. In the �rst
broadcast round, the coordinator requests the timestamps
that are stored in the replicas for that key. All replicas
lookup the key in their in-memory KVS, to �nd their stored
timestamp. Crucially, the replicas do not have to make an
authenticity and integrity check on the timestamp, as the
Lamport clock is stored as part of the metadata in enclave
memory. Upon receiving a majority of the remote timestamps
(including its own locally stored timestamp), the coordinator
creates the timestamp of the new Put, by incrementing the
highest of the received timestamps and concatenating its own
node-id. Finally, it broadcasts the new KV pair along with
its new timestamp to all replicas, which insert the KV pair
into their in-memory KVS. Since the put operation does not
return the value to the user, and the meta data is protected by
the enclave Avocado does not have to check the authenticity
and integrity of the old value. Upon gathering a majority of
acknowledgements it reports completion to the client.
#II: Get. The Get operation is similar to Put; the client sends
its request to a randomly selected server, which coordinates
it. The server then looks up the KV-pair in its local store.

The chosen request coordinator executes one broadcast
round. In certain cases a second, optional broadcast round is
required. Similarly, to the �rst round of a Put, the �rst round
of a Get �nds out the highest timestamp for that key when the
majority of replicas has responded. This action guarantees
that the Getwill observe any completed Put (recall that a Put
onlycompletes if it reaches a majorityof replicas). The replicas
will respond with their locally stored value and corresponding
Lamport timestamp to the coordinator, this involves a lookup
in the local KVS and decryption together with integrity and
authenticity checks of the value. The Get always returns to
the client the value that corresponds to the highest timestamp
found in its �rst round. However, the coordinator can reply to
the client i�, based on the replies it received on its �rst round,
it can guarantee that a majority of replicas are aware of this
value. Otherwise it must perform a second broadcast round.

The second broadcast round is identical to the second
write of a Put: it shares the KV-pair along with its timestamp

USENIX Association 2021 USENIX Annual Technical Conference 289

 Timestamp1

Request's
Coordinator Replica 1 Replica 2 Replica N

Client's Put(K,V)
request

GetTimestamp(K)

process other
requests

process other
requests

If majority of
replicas

acknowledge
put, reply back

to the client

Timestamp2
TimestampN

Received
majority of

local
timestamps

Put(K,V, max(timestamp + 1))

Ack2

Ack1

Client's Put(K,V)
request

AckN

Figure 4: Example of Put request in Avocado protocol.

with all replicas. Completion of the Get is reported to the
client only after gathering a majority of acks. The second
round of the Get, ensures that a Get not only observes the
latest completed Put, but also guaranteeing that the Put will
be visible to all subsequent Gets.
#III Delete. Delete is supported by issuing a Put operation
with an empty value. This will remove the value from the
KVS, but importantly it will not remove the key. We need to
keep the key and the corresponding Lamport clock, to be able
to establish an order of operation if a future Put operation
accesses the same key.
#IV: Fault tolerance. Avocado remains highly available
in the face of machine failures. However, as nodes fail, new
nodes must be added, to ensure that the deployment always
includes a majority of live nodes. In order to ensure that
machines can safely join the con�guration, we deploy a
recovery algorithm inspired by Hermes [47].

Speci�cally, when adding a new node all other live replicas
are noti�ed of the new node’s intention to join the replica
group. The new node starts operating as a shadow replica that
participates in all Put-related broadcast rounds (of remote
replicas), but it cannot yet become the coordinator of a client
request. Furthermore, the shadow replica does not take part
in the Get quorum. In the meantime, the shadow replica
reads chunks (multiple keys) from other replicas to fetch
the latest values and reconstruct the KVS. To archive this
the shadow replica is using the �rst broadcast round of ABD,
but it never executes the second round, because it does not
need to notify other replicas of what it read. After reading the
entire KVS, the shadow replica is up-to-date and transitions
to operational state, whereby it is able to serve client requests.
Result. We compare Avocado against BFT and Raft in

Section 6.2. Our evaluation shows that Avocado is between
4.5 and 65× faster than BFT-Smart [87].
4.3 Con�guration and attestation service

Problem. To ensure the integrity of the code and data de-
ployed in the remote hosts with TEEs, TEEs, such as Intel SGX,
provide attestation mechanisms. Secrets (e.g. certi�cates,
encryption keys, etc.) are provided only after the attestation.
Once an enclave is initialized, an attestation process can be
launched to verify the integrity of code and data inside the
enclave and proves the enclaves identity to a remote party.

Intel SGX uses an architecture Platform Service Enclave
(PSE) calledQuotingEnclave to sign the report of the loaded en-
clave [11, 27]. The remote veri�er forwards this signed report
to the Intel Attestation Service (IAS). Thereafter, IAS con�rms
or refuses the authenticity of the report to the veri�er.

This conventional attestation mechanism using IAS incurs
signi�cant overhead in a distributed setting, especially for
elastic computing or fault tolerance. The reason is that every
time a distributed system (e.g. a distributed KVS) spawns
a new enclave, it needs to perform the remote attestation
via IAS which is not necessarily hosted in the same data
center, incurring high latency. Lastly, and importantly, cloud
providers usually do not want to disclosure their hardware or
cluster information, as this information might be con�dential.
Solution. InAvocado,we overcome this challenge by design-
ing a decentralizedcon�guration andattestation management
system (CAS) for distributed SGX-based applications.

By consolidating and expanding the traditional attestation
mechanism of Intel to build our CAS, we automatically and
transparently perform the attestation for each node. The key
idea behind our design is that we replace the Quoting Enclave
in the Intel attestation mechanism by the LAS. The CAS �rst
attests the LAS using the Intel attestation mechanism, there-
after the LAS will operate as the root of trust in our remote
attestation mechanism. Note, that we can launch as many LAS
instances as required for availability. The LAS performs the
local attestation for Avocado nodes and provides attestation
quotes that can be veri�ed by the CAS. Thus, our mechanism
does not need to interact with IAS after the LAS is trusted,
this reduces signi�cantly the overhead of the traditional attes-
tation. We achieve the transparent and automatic properties by
deeply embedding the remote attestation into the Avocado
runtime. In addition, our CAS only provisions a con�guration
and secrets to executeAvocado once it ensures that all nodes
were not manipulated. Each node of Avocado can only
communicate with others if it can provide a valid certi�cate
provided by our CAS. Therefore, users can just rely on the
CAS to control and operate other components of Avocado.
They only have to attest our CAS before providing secrets to
it. The CAS itself also runs inside an enclave, thus users can
use the traditional attestation method of Intel to validate it.
Result. As shown in 6.3 our CAS achieves 18.2× lower
end-to-end latency in Avocado when comparing with IAS.

290 2021 USENIX Annual Technical Conference USENIX Association

Key Ptr

MAC Lamport
clock (TS) Ptr

Ptr

Encrypted Value Encrypted Value

Host memory

Enclave memory

Key Ptr Key Ptr Key Ptr Key Ptr Key Ptr

Lamport clock
(TS)Value sizeMAC

Encrypted Value

MAC Value
size

Lamport
clock (TS) Ptr

Value
size

Figure 5: Avocado’s single-node KVS.

4.4 Single-node KVS

Problem. Enclave’s memory limitation is in stark contrast
to the requirements of designing an in-memory KVS, which
requires fast access to large amounts of in-memory data.
Unfortunately, enclaves provide only limited physical
memory (94 MiB) and incur high overheads due to the EPC
paging mechanism (2−2000× [51]) beyond it.

To overcome the limitations of the strawman design,
ShieldStore [48], a state-of-the-art secure in-memory KVS
for a single-node system, proposed a MerkleTree-like data
structure design where the entire KVS resides in the untrusted
host memory, except for the security metadata (hash buckets
heads). The metadata stored in the enclave memory is used
to speed up the look up and to perform authenticity and
integrity checks on the KV pairs. However, in our experience,
the ShieldStore design su�ers from continuous integrity
re-calculations. Furthermore, the memory layout prohibits
e�cient concurrent operations.

Compared to Speicher [16], which also introduced the KV
pair separation scheme for enclaves, our KVS is optimized
for paging by encountering locality.
Solution. To overcome these limitations, we designed and
propose our own in-memory concurrent data structure for
the single-node KVS. Our KVS is based on a authenticated
and con�dentiality-preserving skip list [74] which supports
secure and fast updates and lookups. We have chosen skip
list as our fundamental data structure because it maintains
the best features of a sorted array for searching (O(logn))
and of a linked list-like structure for insertion (O(logn)). Our
design carefully partitions the key and value space by placing
the keys along with metadata inside the enclave memory,
while storing the bulk of data encrypted and integrity and
authenticity protected in the untrusted host memory. Our
partitioned data structure (keys and values) allow for faster
lookups than ShieldStore’s hash buckets, while it also reduces
the amount of necessary calculations to guarantee the
integrity and authenticity. Furthermore, our lock-free data
structure supports concurrent operations and it is well-suited
for increased parallelism.

As shown in Figure 5 the nodes of the skip list reside

inside the enclave and contain the key and a pointer to
metadata structure. This structure contains the 16 B MAC,
for guaranteeing the integrity and authenticity of the value.
Furthermore, the data structure also includes the size of
the value, which makes checks on the value easier, since
we do not need to read any information from the untrusted
host memory, to retrieve how many bytes should be read.
Avocado’s consistency protocol uses logical clocks, i.e.
Lamport clocks, to establish an order of operations on each
key (§ 4.2). Therefore, we also store the Lamport clock in the
corresponding metadata block, to prevent costly decryptions
on the timestamp queries. Lastly, the metadata structure also
stores the pointer to the value in the untrusted host memory.

Importantly, separating the metadata and the bulk data (i.e.
values) from the skip list allows us to update the skip list lock
free. Further, it also decreases the EPC pressure when doing a
lookup,as nodes can be storedmore compactand the metadata
can be stored on a di�erent page. However, looking up a value
mandates an additional indirection due to keys and metadata
separation. Nevertheless, we believe that updating the KVS
without acquiring any locks is worth this additional indirec-
tion as it allows better multi-threaded scalability. Therefore,
in contrast to a HashBucket design like ShieldStore, we never
need to stall. In contrast to ShieldStore our approach seems to
be limitedby the enclave memory,however,assuming we have
1 KiB values and 16 B keys, we achieve a space reduction for
enclave memory of 92.8 % compared to a naive implementa-
tion. Further, SGX provides a paging mechanism signi�cantly
increasing the available trusted memory, therefore increasing
the possible size of the KVS. While SGX-paging incurs a high
overhead, often accessed keys will eventually resided in EPC.
Result. Our evaluation in Section 6.4 con�rms that our
Avocado single-node KVS is scalable and more performant;
the speedup of Avocado single-node KVS compared
to ShieldStore increases from 1.6× in a single threaded
benchmark to 5× when utilizing all 8 available CPU threads.

5 Implementation

5.1 System components

Avocado network stack. The Avocado network stack is
based on eRPC [46] and DPDK [4]. In particular, we leverage
Scone to build both eRPC and DPDK. We also assure that
the device DMA mappings resides in the host memory. The
changes to implement the mappings amount to 154 new LoC
and 81 removed LoC.

To run eRPC inside the enclave, we accordingly modify
the hugepages allocation mechanism (a) to ensure that all
network bu�ers reside in the host memory, (b) to �x a bug
regarding the hugepages’ detection, and (c) to alter how the
address of the memory region is calculated. We also replace
eRPC’s allocation algorithm with our own allocator. We
notice that the eRPC’s native allocation algorithm, which
allocates double the space of the previous allocation, quickly
reserves all available memory in Avocado. Our memory

USENIX Association 2021 USENIX Annual Technical Conference 291

allocator is less aggressive and allows us to use our servers’
limited huge page memory more e�ciently. In total, 80 LoC
are added to eRPC, while 28 LoC are removed.

eRPC provides us with its own implementation of the UDP
protocol. To secure the network communication, on top of the
layer protocol, we use a modi�ed OpenSSL [6] version. These
changes allow us to randomly access the encrypted data.
We added 55 LoC to OpenSSL. Further, we added another
287 LoC for a shared en-/decryption layer for the Avocado
single-node KVS store and networking. Lastly, we further
extend the shared layer to well-�t with the message format.
This adds another 205 LoC.
Avocado replication layer. We implement Avocado
replication layer in C++ on top of theAvocado network stack
(2,743 LoC). We implement the protocol from scratch using
the eRPC networking library across Avocado’s di�erent
layers, i.e., replication and networking layer.
Con�guration and attestation service. We implement
Avocado CAS in Rust [59] for better memory safety (22,730
LoC). To run the CAS inside the Intel SGX, we use Scone
since it transparently supports Rust applications. We make
use of an encrypted embedded SQLite [9] to maintain
con�gurations and secrets of Avocado inside Avocado CAS.
To setup the con�guration and bootstrap process, we provide
con�gurations scripts, in Bash and Python 3, in total these
bootstrap scripts require 709 LoC.
Avocado single-node KVS. We implement the Avocado
single-node KVS based on a skip list based partitioned data
structure. Particularly, Avocado single-node KVS extends
Folly’s ConcurrentSkiplist [32]. We ported the Folly library
to Scone, which resulted to 167 new LoC and 40,394 removed
LoC. In addition, the implementation requires another 190
LoC for the integration of the Boost library [19] to Scone.
Further, we implement an e�cient host memory allocator
(388 LoC) for our skip list. We share en-/decryption layer
based on OpenSSL [6] with the network stack.
5.2 Optimizations

[O1] Remove duplicated en-/decryptions. In Avocado,
we use a shared encryption key between all replicas for
the network operations. This allows us to replace some
encryption calls with memory copies, as we can send the
same packets to all replicas without costly re-encrypting the
messages. However, this optimization is an optional trade-o�
between security and performance since one compromised
enclave would compromise the entire system.
[O2] Remove locks. Separating the metadata from the key
allows us to make atomic updates to the skip list, avoiding
expensive locks. However, it also allows us to retire values
earlier to the host memory; thereby reducing the EPC
pressure since the metadata can already be written without
being visible to other calls. Further, our host memory allocator
supports lock-free operations on our skip list by providing
similar atomic allocation and de-allocation primitives.

[O3] Limited number of message bu�ers. We design a
rate limiter to allow all current running requests to �nish
without having to wait for the available resources. While
we mostly implement it to prevent eRPC from running out
of hugepages memory, we also �nd that it also reduces the
stalls between accepting and completing a request.

6 Evaluation

Our evaluation answers the following questions.
• How does the Avocado network stack perform com-

pared to the alternative networking approaches? (§ 6.1)
• How does the Avocado replication layer compare with

alternative protocols (Raft [64] & BFT [87])? (§ 6.2)
• What are the performance overheads of Avocado CAS

and how it compares with Intel’s IAS [3]? (§ 6.3)
• How does the Avocado single-node KVS perform

compared to ShieldStore [48]? (§ 6.4)
• What are the overall performance overheads of
Avocado KVS? (§ 6.5)

• How does Avocado scale with increasing number of
nodes? (§ 6.6)

Testbed.We perform all of our experiments on real hardware
using a cluster of 5 SGX server machines with CPU: Intel(R)
Core(TM) i9-9900K each with 8 cores (16 HT), memory:
64GiB, caches: 32 KiB (L1 data and code), 256 KiB (L2) and
16MiB (L3), NIC: Intel Corporation Ethernet Controller
XL710 for 40GbE QSFP+ (rev 02). They are connected over
a 40GbE QSFP+ network switch.
Benchmarks. For the evaluation, we use the YCSB bench-
mark [7, 24] with di�erent read/write ratios. Client-server
communication over the network is prohibitively expensive
from within an enclave (see § 4.1). Therefore, we stress-test
the performance of Avocado by generating the workload
within the enclave. This is the worst-case scenario for our
system, since a client-server setting will show negligible
latency/throughput overheads, due to client-server commu-
nication being the bottleneck. We con�gured Avocado to
use a shared network key between the replicas (§ 5.2[O1]).
For evaluating the network stack, we use iperf [41].
6.1 Network stack

Baselines and setup. We evaluate the performance of the
Avocado network stack against three competitive baselines:
eRPC-native, sockets-native, and sockets-SCONE. Note
that Scone uses asynchronous syscalls [85] for performance
improvements. Further, note that the native (eRPC and
sockets) versions do not provide any security.

For the sockets (native and Scone), we use iperf to
measure the throughput. For eRPC-native and Avocado
network stack, we implement a simple server-client model
on top of eRPC to simulate iperf’s behavior.

In our experiments, we compare the performance with
di�erent number of packet sizes, while keeping the number
of threads �xed to 4. Note that eRPC supports only UDP while

292 2021 USENIX Annual Technical Conference USENIX Association

Figure 6: Performance comparison of Avocado
network stack, eRPC-native, sockets-native, and
sockets-SCONE for di�erent packet sizes.

iperf supports both TCP and UDP. In our servers, we found
that TCP performs better than UDP, so we report iperf’s
TCP measurements since a designer could always benchmark
both protocols and choose the most performant one.
Results. Figure 6 shows that eRPC-native is comparable
to sockets-native. The reason is that TCP is optimized for
high speed bulk transfers while UDP is optimized for low
latency in the Linux kernel. This has an impact on bu�er
sizes and how data is polled and handed over. In addition
to this, processing of the entire TCP/IP stack is frequently
o�oaded to the network controller.

Based on Figure 6 we deduce two core conclusions; (a)
Scone’s overhead is not negligible—Scone performance
degrades ∼4× and ∼8× compared to Avocado network stack
and sockets-SCONE, respectively; and (b), due to the number
of system calls the sockets’ layer is executing, Avocado
network stack in the context of the secure enclave performs
up to 1.66× faster than sockets-SCONE. As discussed, enclave
exits and data copies in and out of the enclave deteriorate
sockets’ performance. This is further supported by the fact
that the bigger the packet size is, the worse the performance
becomes. Therefore, sockets-SCONE is a poor design choice
as far as our requirement is concerned, and it justi�es our
design of the Avocado network stack.
6.2 Replication protocol

Baselines and setup. We show our system’s end-to-end
performance in comparison with two state-of-the-art
protocols: (a) BFT (BFT-Smart [87]) for the Byzantine setting,
and (b) Raft (eRPC-Raft [1]) for the non-Byzantine setting.
To the best of our knowledge, there is no secure distributed
in-memory KVS; BFT-Smart KVS is the closest baseline in
terms of security properties for Byzantine environments,
but BFT protocols (or BFT-Smart) still do not preserve
con�dentiality. Additionally, we compare Avocado against
eRPC-Raft since it is also built on top of eRPC. This compar-
ison aims to demonstrate the e�cacy of eRPC. We compare
them with a native version of Avocado, Avocado-native,
which runs without TEEs. We compare Avocado and BFT
along three parameters, as shown in Figure 7; (i) di�erent

kOp/s Speedup

Avocado 96 5.05×
eRPC-Raft 19

Table 2: Performance comparison between Avocado and
eRPC-Raft under a 100% W workload and a single client.

read/write ratios, (ii) di�erent value sizes and (iii) di�erent
workload threads per machine. We evaluate using the YCSB
benchmark [7, 24]. Similarly, we compare Avocado against
Raft implemented with eRPC. Note that eRPC-Raft is limited
to only PUT requests and 1 workload thread in total.
Results. Our evaluation shows that Avocado can achieve
4.5× to 65×more operations per second compared to BFT. Our
Avocado presents similar performance to all four workloads,
deducting that it is equivalently performant to both read and
write heavy workloads. In addition, we notice that striving for
the strictest securityguarantees can decrease the performance
to half compared to a native, unsecure version of Avocado.

Furthermore, we observe that the value size has great
impact in the end-to-end performance. For instance, even
in a read-heavy workload with value size to be equal to 256 B,
the performance of Avocado is 6× higher compared to BFT
and 1.83× lower than the native version. However, for value
size to be equal to 1024 B , Avocado is 20% slower than BFT
and 9× slower than Avocado-native. Similarly, for value size
to be equal to 4096 B, Avocado is 1.25× faster than BFT and
3.65× slower than Avocado-native. We discuss the e�ects
of value size on Avocado further in section § 6.5. Lastly,
Avocado scales up with the number of threads; Avocado
achieves 38% more operations when the number of threads
is increased from 4 to 8 threads. Due to the limitation with
the amount of threads inside the enclave, Avocado cannot
be executed with 16 threads.

Lastly, we compare eRPC-Raft againstAvocado.Avocado
under the same settings outperforms eRPC-Raft for 4.8×
as shown in Table 2. The reason is that eRPC-Raft does
process requests asynchronously while in Avocado the time
required for the necessary replicas to respond overlaps with
processing any outstanding requests.

6.3 Con�guration and attestation service

Baseline and setup. To evaluate the advantage of the
attestation mechanism using Avocado CAS in comparison
to the traditional attestation mechanism of Intel using IAS,
we conduct an experiment to measure the end-to-end latency
of the attestation process using both mechanisms.
Results. The attestation using Avocado CAS achieves a
speedup of 18.2× compared to the traditional mechanism
using IAS (see Table 3). The mechanism using Avocado CAS
performs the attestation via LAN connections, sinceAvocado
CAS is deployed in the same cluster as Avocado instances.
Meanwhile,themechanism using IASperforms theattestation
via WAN connections since it requires to verify the quotes us-
ing IAS that is deployed at Intel. Furthermore, Avocado CAS

USENIX Association 2021 USENIX Annual Technical Conference 293

Figure 7: End-to-end performance comparison between Avocado, Avocado-native and BFT for di�erent types of workloads,
value sizes and number of threads.

Mean / s SD / s Speedup

Avocado CAS 0.169 0.0195 18.2×
IAS 2.913 0.177

Table 3: The end-to-end latency comparison between the
attestation mechanisms using Avocado CAS and IAS.

provides transparently provides con�guration management
features to operate in an distributed environment.
6.4 Single-node KVS

Baselines and setup. We compare our Avocado single-
node KVS against ShieldStore [48], a state-of-the-art secure
in-memory KVS for a single-node system. For the single-node
system evaluation, we use Intel(R) Core(TM) i7-8565U
CPU of 8 logical threads and 16GiB memory. This is due to
ShieldStore’s dependencies on speci�c versions of OS, linux-
SGX [82] and tcmalloc [58], we are not able to run it on our
servers. We evaluate Avocado single-node KVS and Shield-
Store across three dimensions using the YCSB workload:
threads (Figure 8), value size and read-write ratios (Figure 9).
Results. Figure 8 shows the scaling capabilities of our
Avocado single-node KVS vs. ShieldStore for two di�erent
value sizes. Our Avocado single-node KVS, for all number
of threads, is 1.6× to 9.5× faster than ShieldStore. Regarding
the value size, we observe that ShieldStore’s performance is
highly a�ected when the value size is increased. For example,
with 2 threads, ShieldStore presents a performance degra-
dation of 7.3× from 16 B to 1024 B while the same scenario
deteriorates Avocado single-node KVS’s performance only
by 1.23×. We deduct this to the fact that Shieldstore searches
require decrypting the concatenated entry of the key and the
value in each visited bucket. As a result, bigger value sizes
increase the cipher text that needs to be decrypted leading
to higher performance costs. In contrast, Avocado stores
keys inside protected area and search time is not a�ected by
value sizes and decryption cost.

We observe similar behavior as the number of threads in-
creases. ShieldStore isdesignedtoavoidsynchronization costs
between threads that are matched to di�erent KVS’s areas.
However, to achieve this, ShieldStore requires to sort and dis-
tribute (through hashing) requests across threads which adds
overheads compared to Avocado single-node KVS. Speci�-
cally,we show that forvalue size equal to16 BAvocado single-
node KVS is 1.6×,3× and5× faster than ShieldStore when using

Figure 8: Performance comparison between Avocado
single-node KVS and ShieldStore under a 50R-50W work-
load for varying number of threads.

2, 4 and 8 threads, respectively. Additionally, for value size
equal to 1024 B,Avocado single-node KVS is 9.5×, 1.5× and 4×
faster than ShieldStore with 2, 4 and 8 threads, respectively.

However, we �nd that both Avocado single-node KVS
and ShieldStore have a performance drop, when the number
of threads is increased. This trend is visible until the number
of threads exceeds the number of physical cores. We attribute
this behavior to two main reasons. Firstly, the CPU we are
running this experiment on, is a lower power CPU, with a low
base frequency (1.8GHz) but a relatively high turbo frequency
(4.8GHz). This high turbo frequency cannot be reached with a
high number of threads running, giving a performance boost
to low thread numbers, compared to higher thread numbers.
Secondly, increasing the number of threads results in a higher
rate of cache misses, due to other cores having requested dif-
ferent memory,or having to invalidate the cache lines in lower
level caches i.e. L1 and L2. This e�ect is especially pronounced
in a write heavy workload,as presented in Figure 8. Increasing
the number of threads further, from number of physical
cores to logical cores, allows the CPU to schedule a di�erent
thread, while it is waiting for a memory access to complete,
explaining the increase of performance with 8 threads.

Secondly, we also study how Avocado single-node KVS
and ShieldStore perform under di�erent value sizes and di�er-
ent read-write ratios. In particular, Figure 9 compares the two
Key-Value (KV) stores against three di�erent workloads and
varying value sizes, where we �x the number of threads across
the experiments to 4. For all three workloads as shown in Fig-
ure 9,Avocado single-node KVS achieves better performance
than ShieldStore; 3.63× to 2.97× faster when value size is equal

294 2021 USENIX Annual Technical Conference USENIX Association

Figure 9: Performance comparison between Avocado
single-node KVS and Shieldstore under three di�erent
workloads for varying value sizes.

Figure 10: Performance comparison of Avocado with and
without network and KVS encryption, inside and outside
of the enclave, with di�erent value sizes with 95 % reads
and 8 threads per machine.

to 16 B, 3× to 1.53× faster when value size is equal to 256 B and
1.87× to 1.56× faster when value size is equal to 1024 B.

Lastly, we conclude that Avocado single-node KVS
is better in read-dominant workload (90% reads) than
in write-heavy workload (90% writes), since Avocado
single-node KVS achieves ∼5% to ∼30% better performance.
6.5 Distributed KVS

Baselines and setup. We evaluate the overhead Avocado
incurs from running inside an enclave, against running
Avocado natively, i.e. without SGX. Furthermore, we also
evaluate the encryption overheads for in-memory KVS and
network tra�c. Thus, we compare Avocado with encryption
activated and deactivated against the native KVS. Both with
encryption for the KVS and network enabled and disabled.
We run the YCSB benchmark with 95 % reads with 5 machines
and 8 threads per machine, with di�erent value sizes.
Results. Figure 10 shows the performance in�uence of SGX
and encryption on Avocado. The value size comparison
shows that for small values, i.e. values under <1 KiB, Avo-
cado reaches around half, between 51.2 and 56.0 % of the
performance compared to the native KVS. However, with
bigger value sizes the di�erence becomes greater with a
slowdown of 3.7× and 9.0×, for 1 or 4 KiB respectively. The
sudden drop in performance compared to the native case is
mainly due to two reasons: �rstly, eRPC has to acquire a lock

3 4 5
Number of Nodes

0

500

1000

1500

2000

Ra
te

 k
Op

/s

Avocado
Native

Figure 11: Performance of Avocado inside and outside of
the enclave running on di�erent number of nodes with a
value size of 256 B, 95% reads and 8 threads per machine.

when allocating DMA for bigger packages size than the MTU,
which is con�gured in our case to 1 KiB. While this penalizes
native and Avocado, it is worse for Avocado, since this
could result in an enclave exit for yielding. Additionally, with
bigger value sizes, it gets more likely that we have to evict a
page from the EPC, when inspecting the network tra�c. This
might be addressed with a memory bu�er, which is reused
for all data transfer between untrusted host memory and EPC
memory. Due to constant accessing of this bu�er, it should
rarely get paged out the enclave.

The comparison also shows that encrypting the in-memory
KVS and network tra�c adds up to 62 % overhead for small
values and 4.6 % for large values in the native case. However,
we observe a di�erent behavior for Avocado. The overhead
for small values is more moderate compared to native with
around 25 %. However, the overhead does not get smaller
with bigger values sizes. In contrast, it peaked with a values
size of 4 KiB with 4.1×, which is due to EPC paging.

In these experiment we also observed a mean latency of
66 µs. This latency was reached in a fully stressed system.
Due to SGX requiring us to make a syscall for taking a
timestamp detailed latency analysis was impractical, as the
syscall overhead together with the world switch would have
easily dominated the benchmark.
6.6 Scalability

Baselines and setup. We evaluated the scalability of
Avocado by running it inside and outside (natively) the
enclave on a varying number of nodes. We run the YSCB
benchmark with 95 % reads on 3, 4 and 5 machines and 8
threads per machine, with a �xed value size of 256 B.
Results. Figure 11 shows the scalability numbers for di�erent
number of nodes. We are limited in our cluster to 5 nodes.
The evaluation shows that replicating the KVS over 5 nodes
instead of 3 increases the throughput of the native solution
by 49 % and 33 % for Avocado.
6.7 Number of keys

Baselines and setup. We measure the performance of
Avocado with increasing number of distinct keys. We run
the YCSB benchmark with two di�erent distributions, i.e.

USENIX Association 2021 USENIX Annual Technical Conference 295

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Millions of keys

100
200
300
400
500
600
700
800

Ra
te

 k
Op

/s

Uniform
Zipfian

Figure 12: Performance of Avocado inside the enclave run-
ning with di�erent number of distinct keys, with a uniform
and Zip�an (� =1.0) distribution with a value size of 256 B,
95% reads and 8 threads per machine

uniform and Zip�an, on 5 machines with 8 threads and 95 %
reads and a �xed value size of 256 B.
Results. Figure 12 shows the throughput of Avocado with
di�erent distribution. Both distributions have a similar perfor-
mance until 700k keys, where the performance of the uniform
distribution starts to su�er greatly, due to SGX paging over-
heads. The uniform distribution prevents e�cient caching
from SGXin theEPC,since itdoesnotgenerateanyhotkeys. In
a uniform distribution,Avocado is therefore restricted by the
EPC size. However, this could be alleviated with a multi-level
lookup, which stores the lower levels in the host memory.

On the other hand, if the data set is not uniformly
distributed Avocado can take advantage of the caching
of EPC and extend the number of supported keys. In our
experiments Avocado throughput was stable until 3.5M
keys in the Zip�an distribution before it starts to su�er from
the paging overheads. Similar to the uniform distribution,
a multi-level lookup could reduce the paging overheads.

7 Related work

Shielded execution.With the adoption of TEEs in the cloud,
shielded execution frameworks are being adopted to provide
strong security properties for unmodi�ed/legacy applications
running in the untrusted environment [13, 17, 35, 93]. These
frameworks promote portability, programmability and good
performance. As a result, they have been used to implement
a wide-range of secure systems for storage [16, 50], data
analytics [80], databases [73], distributed systems [90],
FaaS [92], network functions [91], machine learning [75],
pro�lers [15], etc. Our Avocado project leverages the ad-
vancements in shielded execution frameworks; in particular,
we use Scone [13] to build a distributed storage system.
Networking for shielded execution. Shielded execution
frameworks, like Scone [13] and Eleos [65] provide an
asynchronous system call API [85]. However, the asyn-
chronous syscall mechanism incurs high overheads (due to
data copies) and latency. ShieldBox [91] alleviates the issue
of asynchronous syscalls by using DPDK [4] as polling user
mode driver for a secure middlebox. Unfortunately, Shieldbox
network stack targets only layer 2 in the OSI model, and

therefore, it is incompatible with the RPC layer required for
a distributed KVS. rkt-io provides a library OS in the enclave,
and can therefore provide a full network stack [89].

Secure storage systems. Secure storage is an important
theme for cloud computing systems. A wide-range of
systems have been proposed in the community based on
di�erent hardware with varying security guarantees and
storage interfaces: KVS [16, 48, 50], �lesystems [33, 96, 103],
databases [28, 67, 70, 73, 95], etc. In contrast to these existing
systems,Avocado proposes a scalable distributed in-memory
KV store instead of a single-node system.

For distributed storage system design, Depot [57] and
Salus [102] propose secure distributedstorages,whichprovide
consistency, durability, availability and integrity. A2M [21] is
also robust against Byzantine faults. On top of those proper-
ties,Avocadoalsoo�erscon�dentiality. CloudProof [69]com-
pletely distrusts the cloud provider. However, CloudProof re-
quires the client to guarantee these security properties, which
requires major changes to the client, which isn’t required by
Avocado. Furthermore, since our work leverages hardware-
assisted shielded execution as the root of trust, we do not need
a trusted proxy, which limits the scalability of the system.

8 Conclusion

Wepresentanapproachtobuildasecure,high-performance in-
memory distributed KVS system for untrusted cloud environ-
mentsusingTEEs. Ourdesign includes fourcorecontributions
involvingTEEs in adistributedenvironment: (a) the�rstdirect
I/O RPC network stack for TEEs based on eRPC with the com-
plete support fortransportandsession layers; (b)a securerepli-
cation protocol based on hardening of a non-Byzantine proto-
col, where we transform a Byzantine behavior to a faulty be-
havior using TEEs; (c) a con�guration and attestation service
to seamlessly extend the trust from a single-node TEE to the
distributed environment; (d) a secure in-memory single-node
KVS based on a novel partitioned Skiplist data structure, and
showthat it is well-suited to overcome the memory limitations
and support lock-free scalable concurrent updates in the TEEs.

Importantly, we set out to build a practical system without
compromising performance—the literature distinctly shows
that BFT protocols are typically not adopted in practice
due to their high overheads [22, 71]. In contrast to BFT, our
system provides stronger security properties (also preserves
con�dentiality) and improved performance (4.5× to 65×),
while using f fewer replicas.

Software artifact. Our project is publicly available:
https://github.com/mbailleu/avocado.

Acknowledgements. We thank our shepherd, Yu Hua,
and the anonymous reviewers for their helpful comments.
This work was supported in parts by a UK RISE Grant from
NCSC/GCHQ, a Huawei Research Grant, and a Microsoft
Research PhD Fellowship.

296 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/mbailleu/avocado

References

[1] eRPC-Raft. https://github.com/erpc-io/eRPC/
tree/master/apps/smr. Last accessed: Jan, 2021.

[2] How long does it take to make a context switch?
https://blog.tsunanet.net/2010/11/how-long-
does-it-take-to-make-context.html. Last
accessed: Jan, 2021.

[3] Intel Corporation. Attestation Service for Intel Soft-
ware GuardExtensions (Intel SGX): API Documenta-
tion. https://api.trustedservices.intel.com/
documents/sgx-attestation-api-spec.pdf. Last
accessed: Jan, 2021.

[4] Intel DPDK. http://dpdk.org/. Last accessed: Jan,
2021.

[5] Intel Software Guard Extensions (Intel SGX). https:
//software.intel.com/en-us/sgx. Last accessed:
Jan, 2021.

[6] OpenSSL library. https://openssl.org. Last ac-
cessed: Jan, 2021.

[7] YCSB. https://github.com/brianfrankcooper/
YCSB. Last accessed: Jan, 2021.

[8] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. SIGOPS Oper. Syst. Rev.,
41(6):159–174, Oct. 2007.

[9] G. Allen and M. Owens. The De�nitive Guide to SQLite.
Apress, 2010.

[10] AMD. AMD Secure Encrypted Virtualization (SEV).
https://developer.amd.com/sev/. Last accessed:
Jan, 2021.

[11] I. Anati, S. Gueron, P. S. Johnson, and R. V. Scarlata.
Innovative technology for CPU based attestation
and sealing. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

[12] ARM. Buildingasecuresystemusing trustzone technol-
ogy. http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf.
Last accessed: Jan, 2021.

[13] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Kee�e,
M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,
P. Pietzuch, and C. Fetzer. SCONE: Secure Linux
Containers with Intel SGX. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[14] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory
Robustly in Message-passing Systems. J. ACM, 42(1),
Jan. 1995.

[15] M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer. Tee-
perf: A pro�ler for trusted execution environments.
In 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2019.

[16] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda,
and K. Vaswani. SPEICHER: Securing lsm-based key-
value stores using shielded execution. In 17th USENIX
Conference on File andStorage Technologies (FAST), 2019.

[17] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven. In
Proceedings of the 11th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2014.

[18] J. Behl, T. Distler, and R. Kapitza. Hybrids on Steroids:
SGX-Based High Performance BFT. In Proceedings of
the Twelfth European Conference on Computer Systems
(EuroSys), 2017.

[19] boost: C++ libraries. https://www.boost.org/. Last
accessed: Aug, 2020.

[20] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Trans. Comput.
Syst., 2002.

[21] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries
stick to their word. In Proceedings of Twenty-�rst ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), 2007.

[22] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and
M. Dahlin. Bft: The time is now. In Proceedings of the
2ndWorkshop on Large-Scale Distributed Systems and
Middleware (LADIS), 2008.

[23] A. Cloud. Alibaba Cloud’s Next-Generation
Security Makes Gartner’s Report. https:
//www.alibabacloud.com/blog/alibaba-clouds-
next-generation-security-makes-gartners-
report_595367. Last accessed: Jan, 2021.

[24] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud computing (SoCC), 2010.

[25] M. Correia, N. Neves, and P. Verissimo. How to tolerate
half less one Byzantine nodes in practical distributed
systems. In Proceedings of the 23rd IEEE International
Symposium on Reliable Distributed Systems, 2004., 2004.

USENIX Association 2021 USENIX Annual Technical Conference 297

https://github.com/erpc-io/eRPC/tree/master/apps/smr
https://github.com/erpc-io/eRPC/tree/master/apps/smr
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
http://dpdk.org/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://openssl.org
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://developer.amd.com/sev/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.boost.org/
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367
https://www.alibabacloud.com/blog/alibaba-clouds-next-generation-security-makes-gartners-report_595367

[26] M. Correia, N. F. Neves, L. C. Lung, and P. Veríssimo.
Worm-IT - A Wormhole-Based Intrusion-Tolerant
Group Communication System. 2007.

[27] V. Costan and S. Devadas. Intel SGX Explained, 2016.

[28] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agar-
wal, and L. Alvisi. Obladi: Oblivious Serializable
Transactions in the Cloud. In Proceedings of the 13th
USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2018.

[29] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. ACM SIGOPS Operating
Systems Review (SIGOPS), 2007.

[30] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson.
FaRM: Fast remote memory. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2014.

[31] B. Fitzpatrick. Distributed caching with memcached.
Linux Journal, 2004.

[32] Folly: Facebook Open-source Library. https:
//github.com/facebook/folly.

[33] D. Garg and F. Pfenning. A proof-carrying �le system.
In Proceedings of the 31st IEEE Symposium on Security
and Privacy, 2010.

[34] Introducing Google Cloud Con�dential Com-
puting with Con�dential VMs. https://cloud.
google.com/blog/products/identity-security/
introducing-google-cloud-confidential-
computing-with-confidential-vms.

[35] Asylo: An open and �exible framework for enclave
applications. https://asylo.dev/.

[36] H. S. Gunawi, M. Hao, T. Leesatapornwongsa,
T. Patana-anake, T. Do, J. Adityatama, K. J. Eliazar,
A. Laksono, J. F. Lukman, V. Martin, and A. D. Satria.
What Bugs Live in the Cloud? A Study of 3000+
Issues in Cloud Systems. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2014.

[37] M. Hähnel, W. Cui, and M. Peinado. High-resolution
side channels for untrusted operating systems. In
Proceedings of the USENIX Annual Technical Conference
(ATC), 2017.

[38] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A New Programming Interface for Scalable
Network I/O. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), 2012.

[39] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition forconcurrentobjects. ACMTransaction
of Programming Language and Systems (TOPLAS), 1990.

[40] J. Huang, X. Ouyang, J. Jose, M. Wasi-ur-Rahman,
H. Wang, M. Luo, H. Subramoni, C. Murthy, and D. K.
Panda. High-Performance Design of HBase with
RDMA over In�niBand. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium (IPDPS),
2012.

[41] iPerf - The ultimate speed test tool for TCP, UDP and
SCTP. https://iperf.fr/. Last accessed: Aug, 2020.

[42] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gul-
mezoglu, T. Eisenbarth, and B. Sunar. SPOILER:
Speculative Load Hazards Boost Rowhammer and
Cache Attacks. In 28th USENIX Security Symposium
(USENIX Security 19), 2019.

[43] E. Y. Jeong,S. Woo,M. Jamshed,H. Jeong,S. Ihm,D. Han,
and K. Park. MTCP: A Highly Scalable User-Level TCP
Stack for Multicore Systems. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and
Implementationi (NSDI), 2014.

[44] J. Jose, H. Subramoni, K. Kandalla, M. Wasi-ur-Rahman,
H. Wang, S. Narravula, and D. K. Panda. Scalable Mem-
cached Design for In�niBand Clusters Using Hybrid
Transports. In 12th IEEE/ACMInternational Symposium
on Cluster, Cloud and Grid Computing (ccgrid), 2012.

[45] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. Wasi-ur-Rahman, N. S. Islam, X. Ouyang, H. Wang,
S. Sur, and D. K. Panda. Memcached Design on High
Performance RDMA Capable Interconnects. In Inter-
national Conference on Parallel Processing (ICPP), 2011.

[46] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter
RPCs can be General and Fast. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2019.

[47] A. Katsarakis, V. Gavrielatos, M. S. Katebzadeh, A. Joshi,
A. Dragojevic, B. Grot, and V. Nagarajan. Hermes:
A Fast, Fault-Tolerant and Linearizable Replication
Protocol. In Proceedings of the 25th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[48] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh. ShieldStore:
Shielded In-Memory Key-Value Storage with SGX. In
Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys), 2019.

298 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/facebook/folly
https://github.com/facebook/folly
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://asylo.dev/
https://iperf.fr/

[49] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting
speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P), 2019.

[50] R. Krahn,B. Trach,A. Vahldiek-Oberwagner,T. Knauth,
P. Bhatotia, and C. Fetzer. Pesos: Policy enhanced
secure object store. In Proceedings of the Thirteenth
EuroSys Conference (EuroSys), 2018.

[51] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach,
P. Bhatotia, P. Felber, and C. Fetzer. SGXBOUNDS:
Memory Safety for Shielded Execution. In Proceedings
of the 12th ACM European Conference on Computer
Systems (EuroSys), 2017.

[52] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst.,
1982.

[53] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and
D. Song. Keystone: an open framework for architecting
trusted execution environments. In Proceedings of the
Fifteenth European Conference on Computer Systems
(EuroSys), 2020.

[54] D. Levin, J. J. Douceur, J. Lorch, and T. Moscibroda.
TrInc: Small Trusted Hardware for Large Distributed
Systems. In Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), 2009.

[55] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[56] N. A. Lynch and A. A. Shvartsman. Robust emulation of
shared memory using dynamic quorum-acknowledged
broadcasts. In Proceedings of IEEE 27th International
Symposium on Fault Tolerant Computing (FtCS), 1997.

[57] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Wal�sh. Depot: Cloud Storage with
Minimal Trust. In ACM Transactions on Computer
Systems, 2011.

[58] TCMalloc. https://github.com/google/tcmalloc.
Last accessed: Aug, 2020.

[59] N. D. Matsakis and F. S. Klock, II. The Rust Language. In
Proceedings of the 2014 ACMSIGAdaAnnual Conference
on High Integrity Language Technology (HILT), 2014.

[60] Microsoft Azure. Azure con�dential comput-
ing. https://azure.microsoft.com/en-

us/solutions/confidential-compute/. Last
accessed: Jan, 2021.

[61] C. Mitchell, Y. Geng, and J. Li. Using One-Sided
RDMA Reads to Build a Fast, CPU-E�cient Key-Value
Store. In Proceedings of the 2013 USENIX Conference
on Annual Technical Conference (ATC), 2013.

[62] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck,
D. Gruss, and F. Piessens. Plundervolt: Software-based
fault injection attacks against intel sgx. In Proceedings
of the 41st IEEE Symposium on Security and Privacy
(S&P’20), 2020.

[63] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and
C. Fetzer. Intel MPX Explained: A Cross-layer Analysis
of the Intel MPX System Stack. Proceedings of the ACM
on Measurement and Analysis of Computing Systems,
2018.

[64] D. Ongaro and J. Ousterhout. In Search of an Under-
standable Consensus Algorithm. In Proceedings of the
2014 USENIX Conference on USENIX Annual Technical
Conference (ATC), 2014.

[65] M. Orenbach, M. Minkin, P. Lifshits, and M. Silberstein.
Eleos: ExitLess OS services for SGX enclaves. In
Proceedings of the 12th ACM European ACM Conference
in Computer Systems (EuroSys), 2017.

[66] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang.
The RAMCloud Storage System. 2015.

[67] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee,
A. Haeberlen,H. Singh,A. Modi,and S. Badrinarayanan.
Big data analytics over encrypted datasets with seabed.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[68] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping
Trust in Commodity Computers. In Proceedings of the
2010 IEEE Symposium on Security and Privacy (S&P),
2010.

[69] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and
L. Zhuang. Enabling security in cloud storage slas
with cloudproof. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Conference
(USENIX ATC), 2011.

[70] R. A. Popa, C. Red�eld, N. Zeldovich, and H. Balakr-
ishnan. CryptDB: protecting con�dentiality with
encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP), 2011.

USENIX Association 2021 USENIX Annual Technical Conference 299

https://github.com/google/tcmalloc
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/

[71] D. Porto, J. a. Leitão, C. Li, A. Clement, A. Kate,
F. Junqueira, and R. Rodrigues. Visigoth fault tolerance.
In Proceedings of the Tenth European Conference on
Computer Systems (EuroSys), 2015.

[72] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui,
V. A. Sartakov, and P. Pietzuch. Sgx-lkl: Securing the
host os interface for trusted execution, 2019.

[73] C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A
Secure Database using SGX (S&P). In IEEE Symposium
on Security and Privacy, 2018.

[74] W. Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. Communication of ACM (CACM), 1990.

[75] D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel, P. Bha-
totia, and C. Fetzer. Securetf: A secure tensor�ow
framework. In Proceedings of the 21st International
Middleware Conference (Middleware), 2020.

[76] RISC-V. Keystone Open-source Secure Hardware
Enclave. https://keystone-enclave.org/.

[77] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards
Trusted Cloud Computing. In Proceedings of the 1st
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), 2009.

[78] N. Santos, R. Rodrigues, and B. Ford. Enhancing the
os against security threats in system administration.
In Proceedings of the 13th International Middleware
Conference (Middleware), 2012.

[79] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu.
Policy-Sealed Data: A New Abstraction for Building
Trusted Cloud Services . In 21st USENIX Security
Symposium (USENIX Security), 2012.

[80] F. Schuster, M. Costa, C. Gkantsidis, M. Peinado,
G. Mainar-ruiz, and M. Russinovich. VC3 : Trust-
worthy Data Analytics in the Cloud using SGX. In
Proceedings of the 36th IEEE Symposium on Security
and Privacy (Oakland), 2015.

[81] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. ZombieLoad:
Cross-privilege-boundary data sampling. In CCS, 2019.

[82] Intel Software Guard Extensions SDK for Linux. https:
//01.org/intel-softwareguard-extensions.

[83] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets. In
Proceedings of the 11thACMonAsia Conference onCom-
puter and Communications Security (ASIA CCCS), 2016.

[84] A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang.
Securing RDMA for High-Performance Datacenter
Storage Systems. In 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud), 2020.

[85] L. Soares and M. Stumm. FlexSC: Flexible System
Call Scheduling with Exception-less System Calls. In
Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[86] L. Soares and M. Stumm. FlexSC: Flexible System
Call Scheduling with Exception-Less System Calls. In
Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2010.

[87] J. Sousa and A. Bessani. From Byzantine Consensus
to BFT State Machine Replication: A Latency-Optimal
Transformation. In 2012 Ninth European Dependable
Computing Conference (EDCC), 2012.

[88] Y. Taleb, R. Stutsman, G. Antoniu, and T. Cortes.
Tailwind: Fast and Atomic RDMA-Based Replication.
In Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference (ATC), 2018.

[89] J. Thalheim, H. Unnibhavi, C. Priebe, P. Bhatotia, and
P. Pietzuch. Rkt-io: A direct i/o stack for shielded
execution. InProceedings of the SixteenthEuropeanCon-
ference on Computer Systems (ACM EuroSys 21), 2021.

[90] B. Trach, R. Faqeh, O. Oleksenko, W. Ozga, P. Bhatotia,
and C. Fetzer. T-lease: A trusted lease primitive for
distributed systems. In Proceedings of the 11th ACM
Symposium on Cloud Computing (SoCC), 2020.

[91] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bha-
totia, and C. Fetzer. ShieldBox: Secure Middleboxes
using Shielded Execution. In Proceedings of the ACM
SIGCOMM Symposium on SDN Research (SOSR), 2018.

[92] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and
C. Fetzer. Clemmys: Towards secure remote execution
in faas. In Proceedings of the 12th ACM International
Conference on Systems and Storage (SYSTOR), 2019.

[93] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX: A
practical library OS for unmodi�ed applications on
SGX. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2017.

[94] S.-Y. Tsai and Y. Zhang. A Double-Edged Sword:
Security Threats and Opportunities in One-Sided
Network Communication. In 11th USENIXWorkshop
on Hot Topics in Cloud Computing (HotCloud), 2019.

[95] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data. In
Proceedings of the 39th international conference on Very
Large Data Bases (VLDB), 2013.

300 2021 USENIX Annual Technical Conference USENIX Association

https://keystone-enclave.org/
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions

[96] A. Vahldiek-Oberwagner, E. Elnikety, A. Mehta,
D. Garg, P. Druschel, R. Rodrigues, J. Gehrke, and
A. Post. Guardat: Enforcing data policies at the
storage layer. In Proceedings of the 10th ACM European
Conference on Computer Systems (EuroSys), 2015.

[97] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient
out-of-order execution. In Proceedings of the 27th
USENIX Security Symposium (USENIX Security), 2018.

[98] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In
Proceedings of the 6th Conference on Symposium on
Operating Systems Design & Implementation -
Volume 6 (OSDI), 2004.

[99] S. van Schaik, A. Kwong, D. Genkin, and
Y. Yarom. SGAxe: How SGX fails in practice.
https://sgaxeattack.com/, 2020.

[100] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom. CacheOut: Leaking Data on Intel CPUs via
Cache Evictions, 2020.

[101] V. Vasudevan,D. Andersen,and M. Kaminsky. The Case
for VOS: The Vector Operating System. In 13thWork-
shop on Hot Topics in Operating Systems (HotOS), 2011.

[102] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanan-
dam, L. Alvisi, and M. Dahlin. Robustness in the salus
scalable block store. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2013.

[103] C. Weinhold and H. Härtig. jVPFS: Adding Robustness
to a Secure Stacked File System with Untrusted Local
Storage Components. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2011.

[104] O. Weisse, V. Bertacco, and T. Austin. Regaining lost
cycles with hotcalls: A fast interface for sgx secure
enclaves. SIGARCH Comput. Archit. News, 2017.

[105] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (Oakland), 2015.

[106] S. Yang. SLIK : Scalable Low-Latency Indexes for a Key-
Value Store. In Proceedings of the 2016 USENIX Confer-
ence onUsenixAnnual Technical Conference (ATC), 2014.

USENIX Association 2021 USENIX Annual Technical Conference 301

https://sgaxeattack.com/

	Introduction
	Background
	Trusted computing
	High-performance networking with eRPC

	System model
	Design
	Network stack
	Replication protocol
	Configuration and attestation service
	Single-node KVS

	Implementation
	System components
	Optimizations

	Evaluation
	Network stack
	Replication protocol
	Configuration and attestation service
	Single-node KVS
	Distributed KVS
	Scalability
	Number of keys

	Related work
	Conclusion

