Avocado

A Secure In-Memory Distributed Storage System

Maurice Bailleu, Dimitra Giantsidi,

Vasilis Gavrielatos, Vijay Nagarajan

Pramod Bhatotia Do Le Quoc HUAWE

Distributed in-memory KVS

- Provides a high-performance, scalable, & fault-tolerant storage system

- Extensively used as a fundamental building block in modern online services

Problem statement

How to design a secure distributed in-memory KV store for untrusted cloud environments?

A secure distributed in-memory KVS for untrusted computing infrastructure

Properties:

- Security: confidentiality + integrity + freshness
- Fault tolerance
- Performance

Design

Basic design

Trusted computing

Can we use trusted computing for distributed in-memory KV stores?

Trusted Execution Environment (TEEs):

Hardware extensions for trusted computing,

e.g., Intel SGX and ARM TrustZone

Limitations:

- Untrusted network
- Not well-suited for distributed systems
- Architectural limitations: memory, I/O, and attestation

Design challenges

#1: Networking

How to design a secure network stack?

#2: Fault tolerance

How to tolerant faults in Byzantine settings?

#3: Hardware limitations

How to overcome the architectural limitations of TEEs?

#1: Networking

- Frequent network operations are expensive
- NIC, network and OS are not trusted
- NIC cannot access TEE memory

We designed a network stack for trusted computing based on eRPC and DPDK for fast networking without exiting enclave

#1: Trusted network stack

Splits the network stack into:

- Logic in the enclave and buffers in the host

Package format guarantees freshness

#2: Fault tolerance

- Crash-stop failure
 - Replication
- Network provider can manipulate traffic
 - BFT protocol

We can employ a non-byzantine protocol, due to the trust provided by TEEs and our network layer.

#2: Trusted replication protocol

Avocado based on non-Byzantine protocol (ABD):

- It runs inside the enclave to prevent equivocation

- Majority voting guarantees liveness and forking protection

#3: Hardware limitations

- EPC is limited (94 MiB)
- Secure paging for bigger memory area
- EPC paging incurs high overheads

We designed a fast EPC conserving in-memory KV data structure to overcome the enclave physical memory limitation

#3: In-memory KV store

Split in Memory KV store into two parts:

- Keys -> stored in enclave for fast lookup
- Meta data -> split from key for atomic updates
- Values -> stored in untrusted memory, reducing EPC pressure

Overall system design

Evaluation

Evaluation

- Questions
 - 1. What is the overall performance compared to BFT?
 - 2. How well does Avocado scale?
- Experimental setup:
 - 5x Intel i9-9900K (@3.60GHz, 8 cores, 16 HT)
 - Intel NIC XL710 (40Gb/s, QSFP+)

See the paper for more results

Overall performance

Avocado performs similar in read and write heavy workloads and outperforms BFT

Scalability

Avocado scales with the number of increasing nodes

Avocado: A secure in-memory distributed storage system

Security properties: confidentiality + integrity + freshness

Challenge: How to leverage TEEs to design a high-performance secure and fault-tolerant in-memory KV store?

Contributions

Trusted network stack

Trusted replication protocol

Trusted in-memory KV store

Configuration and attestation service

(see the paper for details)

Thank you!

If you have follow up questions, please contact us:

Maurice Bailleu M.Bailleu@ed.ac.uk

Dimitra Giantsidi D.Giantsidi@sms.ed.ac.uk