Avocado

A Secure In-Memory Distributed Storage System

Maurice Bailleu, Dimitra Giantsidi, Do Le Quoc Pramod Bhatotia

% m

HUAWEI

Vasilis Gavrielatos, Vijay Nagarajan

Distributed in-memory KVS

—_—_—————— e ——————

Host memory

KV store

Replication layer

o —— — — — — — — — e e,

Host memory

KV store

Replication layer

e ——— — — — — — — —

N —————— — — — —

——— — — — — — — — — — ——

Network

—_—_—————— e ——————

Host memory

KV store

Replication layer

e ————— — — — — — —

- Provides a high-performance, scalable, & fault-tolerant storage system
- Extensively used as a fundamental building block in modern online services

Trust in cloud storage

. Storage operations
i

User

Problem statement

Avocado

A secure distributed in-memory KVS
for untrusted computing infrastructure

Properties:

e Security: confidentiality + integrity + freshness
* Fault tolerance

e Performance

Design

1gn

ic des

Bas

— — — — —

—— — — — —

—— — — — —

Untrusted network

Trusted computing

Address space
Can we use trusted computing for

distributed in-memory KV stores?

Secure memory

Trusted Execution Environment (TEEs): fegioniionenclave)

Hardware extensions for trusted computing, Trusted
e.g., Intel SGX and ARM TrustZone application
Limitations:
- Untrusted network

: L TEE
- Not well-suited for distributed systems Intel SGX or

- Architectural limitations: memory, 1/0, and attestation ARM TrustZone

Design challenges

Node Node
$ $
Network
!

Node

#1: Networking

How to design a secure
network stack?

Replica

Replica

Replica

#2: Fault tolerance

How to tolerant faults
in Byzantine settings?

Host memory ©o

v
Enclave memory t 128 MiB

#3: Hardware limitations

How to overcome the
architectural limitations of TEEs?

1: Networking

* Frequent network operations are expensive Trusted enclave
* NIC, network and OS are not trusted ;

Network call
* NIC cannot access TEE memory l

Exit enclave to
issue the syscall

We designed a network stack for trusted computing
based on eRPC and DPDK for fast networking without exiting enclave

1: Trusted network stack

En-/decryption lib Avocado buffers

Tx/Rx queues Msg buffers

2: Fault tolerance

* Crash-stop failure
* Replication

Replica

Replica

* Network provider can manipulate traffic
* BFT protocol

Replica

We can employ a non-byzantine protocol, due to the trust provided by TEEs
and our network layer.

2: Trusted replication protocol

Resp(V), iff

Get(K) majority of nodes
Requests'’ have max(TS) R
Coordinator
GetValue(K) V+T5
>

Replica 1

GetValue(K) V+TS

Replica N >

Avocado based on non-Byzantine protocol (ABD):
- It runs inside the enclave to prevent equivocation

- Majority voting guarantees liveness and forking protection

3: Hardware limitations

* EPC is limited (94 MiB)
Enclave
physical memory |128MmiB
* Secure paging for bigger memory area (EPC)

!

> 128MiB — EPC paging

* EPC paging incurs high overheads

We designed a fast EPC conserving in-memory KV data structure
to overcome the enclave physical memory limitation

#3: In-memory KV store

»
= u
B a - B

Overall system design

Replication layer

Networking layer Key & metadata

NIC memory Encrypted values

|
|
|
|
I
|
|
|
|
|
I
|
|
|
|
|
I
|
|
/

Untrusted network

o " — —— — — — — — — e

7

— e o — — — — — — — — — — e

Evaluation

Evaluation

* Questions
1. What is the overall performance compared to BFT?
2. How well does Avocado scale?

* Experimental setup:
e 5x Intel i9-9900K (@3.60GHz, 8 cores, 16 HT)
* Intel NIC XL710 (40Gb/s, QSFP+)

Overall performance

1200
_ B BFT M Native M Avocado A
% 1000
T
9_4 800 0
M
S 600 @
2 a
bo 400 g
> prt
o D
< 200 ®
o, N -
99% 95% 90% 50%
Read ratio

Scalability

1800 B Avocado M Native

1200
1000
600
400
200
0

3 4 5

of Nodes

Throughput [kOp/s

>

191199 SI Joy8IH

Avocado:
A secure in-memory distributed storage system

Trusted network stack

Trusted replication protocol
Trusted in-memory KV store

Configuration and attestation service
(see the paper for details)

Thank you!

If you have follow up questions, please contact us:

Maurice Bailleu Dimitra Giantsidi
M.Bailleu@ed.ac.uk D.Giantsidi@sms.ed.ac.uk

