
CNTR
Lightweight OS Containers

Jörg Thalheim, Pramod Bhatotia Baris KasikciPedro Fonseca

USENIX ATC 2018

Container-based virtualization

Lightweight
isolation

Namespaces

Process-level
virtualization

Cgroups

Extensively used in
production

2

Why lightweight containers are important?

● Fast deployment

● Low resource usage

● Low build times

3

Containers are NOT lightweight anymore!

Only 33% data was accessed
by the applications!

Lower
is

better

Limitations: Inefficient development and deployment of containers
4

Case study: Top 50 Docker Hub container images

Why containers are becoming heavyweight?

Build description:
e.g. Dockerfile

Application
(MySQL)

Additional tools
(Coreutils, ...)

Container images are large due to additional tools!

Host

Container

Container
image

5

Additional tools

● Why are they important?
○ Debugging, inspection, monitoring, management, etc.

6

Additional tools are NOT used in the common use case

● What are these additional tools?
○ Debuggers, editors, coreutils, shell, etc.

Cntr: Split container images

Slim image Fat image

Slim container
Runs the application

Fat container
Serves tools to the user

Original image

CNTR
Provides access

Common use case Deployed on demand

7

Design

Design goals

● Generality
○ Support a wide range of workflows (debugging, inspection, etc.)

● Efficiency
○ No performance overhead on the application

● Transparency
○ No modifications to the OS, container engine, and application

9

Overview

Nested
namespace

App
(MySQL)

CntrFS
server

Slim container Fat container
User

Access tools via FUSE

Access the
application

Tools
(Gdb, coreutils...)

Access tools

10

Nested namespace

● Implemented on top of existing OS features
○ Namespaces
○ FUSE

/

var usr

lib

cntrusr

bin

mysql

bin

gdb

“Slim” image

“Fat” image

● Nested namespace
filesystem view

11

“Fat”
container

Nested
namespace

POSIX
filesystem

API

System call
Kernel space

Process

User space

CntrFS

CntrFS
server

Request

VFS FUSE

Process and CntrFS server can run in different namespaces (container)
12

● Easy to use
○

Implementation
● Lightweight deployment

○ Single 1.2 MB static binary

root@fat-container $ cntr attach slim-container
root@slim-container $

● Supports all popular containers
○ Docker, LXC, LXD, Systemd-nspawn, rkt, etc.

13

Evaluation

Evaluation
● Questions:

1. Is the implementation complete?
2. What are the performance overheads?
3. How effective is the approach in reducing container image sizes?

● Experimental testbed:
○ M4.xlarge VM on EC2
○ 100 GB device of type GP2 (SSD-backed network storage)
○ Base filesystem: Ext4

15

○ Unsupported tests are minor Linux-specific implementation details
○ 3 of 4 unsupported tests also don’t work on overlayfs (default on Docker)

#1: Completeness

● Benchmark: Xfstests regression test suite

Cntr can already be used in production

Tests Supported tests

94 90 (95.74%)

16

#2 (a): Overheads for the “slim” container

17

0%
For the common use case

of accessing the slim container

#2 (b): Overheads for the “fat” container

Cntr incurs reasonable overhead for management tasks

Lower
is

better

1.5x

18

Phoronix test suite

#3: Effectiveness

Average reduction is 66% of the container size

Containers with
static Go binaries

Majority of
containers contains
unnecessary data

Top 50 containers on Docker Hub

19

Demo!

Demo setup

21

Host:
NixOS

“Slim”
container:
Busybox

Access
Via CNTR

$ sudo docker run --name mycontainer busybox$ sudo cntr attach mycontainer

Summary
● Containers are NOT lightweight in practice

○ Limitation: Inefficient development and deployment of containers

● CNTR: Lightweight OS Containers
○ Splits the container image into fat and slim parts
○ Leverages FUSE to expose additional tools in a nested namespace

Generic + Transparent + Efficient

Try it out!
https://github.com/Mic92/cntr

22

https://github.com/Mic92/cntr

