CNTR

Lightweight OS Containers

Jorg Thalheim, Pramod Bhatotia Pedro Fonseca Baris Kasikci
8%\ THE UNIVERSITY UNIVERSITY of
¥Y: of EDINBURGH WASHINGTON s

USENIX ATC 2018



Container-based virtualization

Process-level
virtualization

O\

Extensively used in
production

Namespaces

Cgroups

o~
J

Lightweight
isolation

&

docker




Why lightweight containers are important?

e Fast deployment
e Low resource usage

e Low build times



Containers are NOT lightweight anymore!

Case study: Top 50 Docker Hub container images

=
o
o

60
40
20

Container size [MB]

Limitations: Inefficient development and deployment of containers

Be_fgre

Only 33% data was accessed
by the applications!

¢

==

After

Lower
IS
better



Why containers are becoming heavyweight?

L P

Build description: Container Host
e.g. Dockerfile image
Application Additional tools
(MySQL) (Coreutils, ...)

Container images are large due to additional tools!



Additional tools

e \What are these additional tools?
o Debuggers, editors, coreutils, shell, etc.

e Why are they important?
o Debugging, inspection, monitoring, management, etc.



Cntr: Split container images

‘ Original image |

Slim image Fat image

Slim container CNTR Fat container
Runs the application Provides access Serves tools to the user

Common use case Deployed on demand




Design



Design goals

e Generality
o Support a wide range of workflows (debugging, inspection, etc.)

e Transparency
o No modifications to the OS, container engine, and application

e Efficiency
o No performance overhead on the application



Overview

User

Slim container

Access the
application

Access tools via FUSE

Fat container

Access tools

10



Nested namespace

Nested namespace

filesystem view

“Slim” image —

S—

usr

——
var usr
| [
lib bin
| [
cntr gdb

— “Fat” image

bin

mysql

Implemented on top of existing OS features

@)
O

Namespaces
FUSE

11



CntrFS

User space




Implementation

e Lightweight deployment
o Single 1.2 MB static binary

e Easytouse

o cntr attach slim-container

e Supports all popular containers
o Docker, LXC, LXD, Systemd-nspawn, rkt, etc.

13



Evaluation



Evaluation

e Questions:
1. Is the implementation complete?
2. What are the performance overheads?
3. How effective is the approach in reducing container image sizes?

e Experimental testbed:
o M4 xlarge VM on EC2

o 100 GB device of type GP2 (SSD-backed network storage)
o Base filesystem: Ext4

15



#1. Completeness

Benchmark: Xfstests regression test suite

@)

@)

Tests Supported tests
94 90 (95.74%)

Unsupported tests are minor Linux-specific implementation details
3 of 4 unsupported tests also don’t work on overlayfs (default on Docker)

Cntr can already be used in production

16



#2 (a): Overheads for the “slim” container

0%

For the common use case
of accessing the slim container

17



Phoronix test suite

#2 (b). Overheads for the “fat” container

Lower
IS
better

1.9x

T.IX

19
1.ZA

2.1x
,bb <2
o
< Q
o~

1.0x

I I 0.2x I
\{.
>

1.4x 1.5x
I 0.9x 1.0x 1.0x 1.0x

13:3x
o>
Q:O
~

73X
2.3X I

1.5x

Q

O
QJQ

&

®

X
©
“ %
o — o
— /wjd\
pPeayJaA0 BAIIR|9Y

18

Cntr incurs reasonable overhead for management tasks




#3: Effectiveness

Top 50 containers on Docker Hub

_ 8 Containers with 3

) static Go binaries

c6 =

Y

C 4

o)

T 2

0 L] ] Majority of

0 25 50 75 100 @containers contains
_J Reduction [%] unnecessary data

Average reduction is 66% of the container size




Demo!



Demo setup

Host: W [
NixOS J L

|

$ sudo cntr attach mycontainer

“Slim”
Access | .
: container:
Via CNTR Busybox

|

$ sudo docker run --name mycontainer busybox

21



Summary

e Containers are NOT lightweight in practice
o Limitation: Inefficient development and deployment of containers

e CNTR: Lightweight OS Containers
o Splits the container image into fat and slim parts
o Leverages FUSE to expose additional tools in a nested namespace

Generic + Transparent + Efficient

Try it out!
https://qithub.com/Mic92/cntr

22


https://github.com/Mic92/cntr

