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Why lightweight containers are important?

e Fast deployment
e Low resource usage

e Low build times



Containers are NOT lightweight anymore!

Case study: Top 50 Docker Hub container images
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Why containers are becoming heavyweight?

L P

Build description: Container Host
e.g. Dockerfile image
Application Additional tools
(MySQL) (Coreutils, ...)

Container images are large due to additional tools!



Additional tools

e \What are these additional tools?
o Debuggers, editors, coreutils, shell, etc.

e Why are they important?
o Debugging, inspection, monitoring, management, etc.



Cntr: Split container images

‘ Original image |

Slim image Fat image

Slim container CNTR Fat container
Runs the application Provides access Serves tools to the user

Common use case Deployed on demand




Design



Design goals

e Generality
o Support a wide range of workflows (debugging, inspection, etc.)

e Transparency
o No modifications to the OS, container engine, and application

e Efficiency
o No performance overhead on the application



Overview

User

Slim container

Access the
application

Access tools via FUSE

Fat container

Access tools
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Nested namespace

Nested namespace

filesystem view

“Slim” image —
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cntr gdb

— “Fat” image

bin

mysql

Implemented on top of existing OS features
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CntrFS

User space




Implementation

e Lightweight deployment
o Single 1.2 MB static binary

e Easytouse

o cntr attach slim-container

e Supports all popular containers
o Docker, LXC, LXD, Systemd-nspawn, rkt, etc.
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Evaluation



Evaluation

e Questions:
1. Is the implementation complete?
2. What are the performance overheads?
3. How effective is the approach in reducing container image sizes?

e Experimental testbed:
o M4 xlarge VM on EC2

o 100 GB device of type GP2 (SSD-backed network storage)
o Base filesystem: Ext4
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#1. Completeness

Benchmark: Xfstests regression test suite

@)

@)

Tests Supported tests
94 90 (95.74%)

Unsupported tests are minor Linux-specific implementation details
3 of 4 unsupported tests also don’t work on overlayfs (default on Docker)

Cntr can already be used in production
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#2 (a): Overheads for the “slim” container

0%

For the common use case
of accessing the slim container
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Phoronix test suite

#2 (b). Overheads for the “fat” container
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Cntr incurs reasonable overhead for management tasks




#3: Effectiveness

Top 50 containers on Docker Hub

_ 8 Containers with 3

) static Go binaries
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Average reduction is 66% of the container size




Demo!



Demo setup

Host: W [
NixOS J L

|

$ sudo cntr attach mycontainer

“Slim”
Access | .
: container:
Via CNTR Busybox

|

$ sudo docker run --name mycontainer busybox
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Summary

e Containers are NOT lightweight in practice
o Limitation: Inefficient development and deployment of containers

e CNTR: Lightweight OS Containers
o Splits the container image into fat and slim parts
o Leverages FUSE to expose additional tools in a nested namespace

Generic + Transparent + Efficient

Try it out!
https://qithub.com/Mic92/cntr
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