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Container-based virtualization

Lightweight
isolation

Namespaces

Process-level
virtualization

Cgroups

Extensively used in 
production
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Why lightweight containers are important?

●  Fast deployment

●  Low resource usage

●  Low build times
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Containers are NOT lightweight anymore!

Only 33% data was accessed
by the applications! 

Lower 
is 

better

Limitations: Inefficient development and deployment of containers
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Case study: Top 50 Docker Hub container images



Why containers are becoming heavyweight?

Build description: 
e.g. Dockerfile

Application 
(MySQL)

Additional tools 
(Coreutils, ...)

Container images are large due to additional tools!

Host

Container

Container
image
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Additional tools

● Why are they important?
○ Debugging, inspection, monitoring, management, etc.
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Additional tools are NOT used in the common use case

● What are these additional tools?
○ Debuggers, editors, coreutils, shell, etc.



Cntr: Split container images

Slim image Fat image

Slim container
Runs the application

Fat container
Serves tools to the user

Original image

CNTR
Provides access

Common use case Deployed on demand
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Design



Design goals

● Generality
○ Support a wide range of workflows (debugging, inspection, etc.)

● Efficiency 
○ No performance overhead on the application

● Transparency 
○ No modifications to the OS, container engine, and application
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Overview

Nested 
namespace

App 
(MySQL)

CntrFS
server

Slim container Fat container
User

Access tools via FUSE

Access the 
application

Tools
(Gdb, coreutils...)

Access tools
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Nested namespace

● Implemented on top of existing OS features
○ Namespaces
○ FUSE

/

var usr

lib

cntrusr

bin

mysql

bin

gdb

“Slim” image

“Fat” image

● Nested namespace 
filesystem view
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“Fat”
container

Nested 
namespace

POSIX 
filesystem 

API

System call
Kernel space

Process

User space

CntrFS

CntrFS
server

Request

VFS FUSE

Process and CntrFS server can run in different namespaces (container)
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● Easy to use
○  

Implementation
● Lightweight deployment

○ Single 1.2 MB static binary

root@fat-container $ cntr attach slim-container
root@slim-container $

● Supports all popular containers
○ Docker, LXC, LXD, Systemd-nspawn, rkt, etc.
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Evaluation



Evaluation
● Questions:

1. Is the implementation complete?
2. What are the performance overheads?
3. How effective is the approach in reducing container image sizes? 

● Experimental testbed:
○ M4.xlarge VM on EC2 
○ 100 GB device of type GP2 (SSD-backed network storage) 
○ Base filesystem: Ext4
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○ Unsupported tests are minor Linux-specific implementation details 
○ 3 of 4 unsupported tests also don’t work on overlayfs (default on Docker)

#1: Completeness 

● Benchmark: Xfstests regression test suite

Cntr can already be used in production

Tests Supported tests

94 90 (95.74%)
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#2 (a): Overheads for the “slim” container
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0%
For the common use case 

of accessing the slim container



#2 (b): Overheads for the “fat” container

Cntr incurs reasonable overhead for management tasks

Lower 
is 

better

1.5x
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Phoronix test suite



#3: Effectiveness

Average reduction is 66% of the container size

Containers with 
static Go binaries

Majority of 
containers contains 
unnecessary data

Top 50 containers on Docker Hub
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Demo!



Demo setup
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Host:
NixOS

“Slim” 
container:
Busybox

Access 
Via CNTR

$ sudo docker run --name mycontainer busybox$ sudo cntr attach mycontainer



Summary
● Containers are NOT lightweight in practice

○ Limitation: Inefficient development and deployment of containers

● CNTR: Lightweight OS Containers
○ Splits the container image into fat and slim parts
○ Leverages FUSE to expose additional tools in a nested namespace

Generic + Transparent + Efficient

Try it out! 
https://github.com/Mic92/cntr
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https://github.com/Mic92/cntr

