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Resumo—Modern NUMA multicore machines present complex memory access latency and bandwidth characteristics, making it hard
to allocate memory optimally for a given program’s access patterns. However, sub-optimal allocation can significantly impact programs
execution performance. Therefore, it is important for a programmer or system designer to understand the architectural layout of a given
system in which a program executes so as to utilize the underlying systems’ resources efficiently. However, NUMA systems present the
challenge to the programmer on how to allocate data in such a way that memory access latency is minimized and bandwidth is
maximized. Additionally, NUMA architectures form a challenge for the programming models and runtime systems that need to
effectively distribute execution load on available resources. Therefore, the main goal of this PhD thesis is to design solutions that will
benefit programmers and runtime systems for asymmetrically connected NUMA systems.
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1 INTRODUCTION

NOn-uniform memory access (NUMA) architectures
present the challenge to the multithreading software

developer on how to allocate data in such a way that me-
mory access latency is minimized and bandwidth is maxi-
mized. Additionally, NUMA architectures form a challenge
for the programming models and runtime systems that
need to effectively distribute execution load on available
resources. For applications and benchmarks that deal with
high amount of data and tasks, the need for an effective
load distribution becomes of great importance. Executing
such applications on NUMA systems without considering
hardware architecture characteristics and application’s me-
mory behavior, has major impact on performance and re-
sults in significant slowdowns. More precisely, other than
remote memory accesses, shared resource contention can
lead to performance degradation. This is because the per-
formance of parallel application depends on; memory allo-
cation, thread placement, and data structures used (distribu-
ted/replicated). The problems that may arise on a NUMA
system include: Congestion on the interconnect, congestion
on the memory controllers, load imbalance of the memory
controllers, and suboptimal allocation can significantly im-
pact the performance of parallel programs.

Therefore, applications sensitive to performance can re-
quire complex logic to handle memory with divergent me-
mory characteristics. NUMA support has been around for
awhile in various operating systems. In most scenarios, an
operating system can simply be run on a NUMA system,
providing decent performance for typical applications. In
these cases, kernel NUMA support frequently optimizes
process execution without the need for user intervention.
However, when the heuristics provided by the operating
system do not provide satisfactory application performance
to the end user, special NUMA configurations through tools
and kernel configurations are needed. For instance, in high-
performance computing, high-frequency trading, and for

realtime applications, this is typically the case. For regular
enterprise-class applications, these issues have also recently
become more significant [16].

The main goal of this PhD thesis1 is to design solutions
that will benefit programmers and runtime systems for
asymmetrically connected NUMA systems. This is challen-
ging for a number of reasons: Efficient online measurement
of communication patterns is challenging. For instance, it is
important for a programmer or system designer to unders-
tand the architectural layout of a given system in which the
program executes so as to utilize the underlying systems’
resources efficiently e.g. to avoid remote data accesses as
much as possible or to reduce pressure on congested resour-
ces. However, existing tools for examining NUMA topology,
such as numactl, do not provide enough information about
the asymmetry and heterogeneity presented by modern
NUMA architectures. In addition, vendor specifications are
often incomplete or vague. Worse hardware diversity is in-
creasing as much as complexity. Secondly, changing the pla-
cement of threads and memory may incur high overhead.
For example, migrating large amounts of memory can be
extremely costly, hence thread migration must be done in
way that minimizes memory migration. Running multiple
applications simultaneously is also another challenge. Ap-
plications may have conflicting preferences and different
communication patterns and are thus differently impacted
by the connectivity between the nodes they run on. Lastly,
finding the optimal placement is combinatorially difficult.
The number of possible application placements can be very
large and a brute-force approach to the problem is not
possible as the search space grows rapidly [9].

1. This work was supported by national funds through Fun-
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Figura 1. Modern NUMA systems, with eight nodes

2 BACKGROUND AND RELATED WORK

Figure 1 depicts an AMD Opteron NUMA machine with
eight nodes (each hosting six cores). Interconnect links
exhibit many disparities. For instance, links have different
bandwidths: some are 16-bit wide, some are 8-bit wide and
others are 8plus(+)-bit wide. Furthermore, the asymmetry
of interconnect links has dramatic and at times surprising
effects on performance.

Optimizing thread and memory placement on NUMA
systems has been extensively studied [11], [12], [1], [3],
[2], [15]. The most common strategy for thread and data
placement in NUMA is locating data as close as possible
to cores. However, dynamic conditions of the architecture
resources often leads to another allocation decisions. For
instance, exploiting 2-hop distances remote memory rather
than 1-hop distance, can reduce the memory access latency
depending on the status of interconnect [1]. More preci-
sely, when the nodes are connected by links of different
bandwidth, we must consider not only whether the threads
and data are placed on the same or different nodes, but how
these nodes are connected. As another example, it turns out
that interleaving dramatically reduces memory controller
and interconnect congestion by alleviating the load imba-
lance and mitigating traffic hotspots, thereby improving the
memory latency [2]. Additionally, when an IMC linked to
local memory is congested, placing data in remote memory
instead of local memory could yield better performance [3].

As a general comparison, we observed that most related
work either perform thread or data mapping, but not both
of them together. Thread mapping mechanisms such as
[17], are not able to reduce the amount of remote memory
accesses on NUMA architectures. On the other hand, data
mapping mechanisms such as [2], are not able to reduce
cache misses or correctly handle the mapping of shared
pages. Existing mechanisms that perform both mappings
together have several disadvantages. For instance, [1] uses
a simpler/best-effort approach to find the best thread place-
ments which might not be optimal and also only considers
interconnect asymmetry as the only NUMA memory re-
source. On the other hand, [18]’s solution requires hardware
support. Several other proposals require specific architectu-
res, APIs or programming languages to work, limiting their
applicability.

Recent research has shown that the performance effects
of NUMA are significant and the problem is nontrivial. The
relevance of this emerging problem is evident by the recent
attention that it has received from the research community.
However, this open problem is still at its infancy.

Therefore, our main idea for this thesis is to provide
a thread and data mapping model that may lead to more
accurate/optimal solutions. More precisely, we will extend
the [1] solution with the [17] model. We will model the
NUMA memory system factors that may impact optimal
core allocations for memory intensive applications using In-
teger Programming techniques. Such factors include: hard-
ware configuration, application memory behavior, and their
asymmetry; local memory bandwidth and DRAM conten-
tion; and maximum inter-node memory bandwidths.
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