rkt-10

A Direct I/O Stack for Shielded Execution

https://github.com/Mic92/rkt-io

Jorg Thalheim

Christian Priebe
Harshavardhan Unnibhavi, Pramod Bhatotia Peter Pietzuch
Techmische &9\ THE UNIVERSITY Imperial College
Universit ¢V of EDINBURGH London

ACM EuroSys 2021

https://github.com/Mic92/rkt-io

Security in the untrusted infrastructure

Untrusted cloud
infrastructure

- - -

User
application

|

How do we ensure application security
in untrusted cloud environments?

Trusted computing

Hardware-assisted
trusted execution environments (TEES)

% am AMDD1 &
© Keystone

ﬁ (=) Alibaba Cloud
Google Cloud

Offered by major cloud providers

/O in TEESs: "Strawman design”

TEE
Application
read() read() return)
#1 Worldva AVorldswitch
Unprotected userspace
#2 Syscall

\ / #3 Syscall return
OS

Worldswitch is 5x slower than syscalls

Protected
memory

Current I/0O mechanisms: “Switchless design”

Host OS Library OS
TEE TEE
Application A Application B
------- System call interface -----
Asynchronous |/O interface
A Library OS
= Y L --Untrusted interface-{-=--=-=-~
5 %’_ scall4 | memory resp2 % §_ Untrusted runtime
2.2 AP resp3 23 0s
(45} n = (O]
calls response
t v
| o | | 0s |

Switchless design avoid world-switches on the I/O path

https://app.diagrams.net/?page-id=vkoYHLr9PS5z_teunAsH&scale=auto%23G11A_gh1y-wb0250qgYgw0uzEqzouPVNan
https://app.diagrams.net/?page-id=vkoYHLr9PS5z_teunAsH&scale=auto%23G1W6YnxZwRdaHePl7XzMcn-6W0-A-5aTej

Limitations of switchless designs

e Performance
o OS bottlenecks: The OS is still on the I/O path

o /O threads: Needs dedicated I/O threads, require tuning to find optimal number of threads

o Data copies: Additional data copies between TEE « IO threads «» OS

e Compatibility

o LibOS-based approaches often only provide a subset of Linux ABI

rkt-io: A Direct |/O library for TEEs

rkt-io combines a library OS with direct I/O libraries

TEE
Application

————————— | System call interface |------

Trusted TEE
) LibOS — Compatibility: Full Linux ABI

¢

Direct I/O interface
) |
~
Host memory

Untrusted host < /\

NIC SSD

Performance: OS-bypass &
less copies

Direct I/O in TEES

100 A

5.6-5.8X slower

80 —

60 —
Lower is better

Time [us]

40 -
1.1X slower

20 -

LA :

native sync async direct

Syscall perf (sendto)

Direct I/O improves |0 performance significantly

Design

Design principles

1

|/O stack
interface

2

/O event
handling

3

/O stack
partitioning

10

I/O interface:
Host OS independence

11

1. Host OS independent I/O stack

Network: Storage:
e DPDK (Data Plane Development Kit) e SPDK (Storage Performance Development Kit)
e Direct access to fast network interface e Direct access to NVMe devices from userspace
e No TCP/IP stack e No filesystem

e No socket e No file abstraction

How to maintain compatibility with existing APIs?

rkt-io: Host OS independent I/O stac

Library OS (LKL)

Direct I/O libraries

Hardware

TEE

Musl libc / Linux ABI

Full compatibility for

A&

Linux Linux
network stack filesystems

[[
Driver interface

: '
DPDK SPDK

existing applications

> Trusted TEE

Direct hardware access

/ }
NIC SSD

N Host-OS bypass

} Untrusted host

13

I/0 event handling:
Polling-based approach

14

2. 1/0 event handling

Interrupt based driver

NIC driver

Interrupts send receive

NIC

Interrupts cause world switches in TEE!

15

2. Rkt-io’s polling driver (for NIC)

TCP/IP stack Polling thread TEE

|
send() poll() poll()/receive()

@ Host memory

rkt-io uses device polling to handle the I/O events

I/O stack partitioning:
Control and data path partitioning

17

3. 1/0 stack partitioning for TEEs

First copy!

Return to app, app reuses buffer

__

Second copy!

.

.

Protected
memory

NVMe
queues

18

One-copy network/block device driver

SKB = Linux’s internal buffer socket

Before After

TCP/IP stack 1 TEE memory TCP/IP stack

: . Send < Receive!

ST T

SKB \/ SKB | | | skg | Copy | sk ||

. i/] i
— A.@.QP.Y-&-------,I i <— No copy! —

@ Untrusted »
i | memory | |
| : & :

Page cache/socket buffer are written to unencrypted memory 19

Usage

Usage

$ rkt-io-run ./app-disk.img /usr/bin/redis-server --bind 10.0.1.1

e Applications are packaged as encrypted, signed filesystem images
e Transparent substitution of musl libc at runtime

e |/O path is (optionally) encrypted:
o Full disk encryption with cryptsetup
o Layer-3 VPN with wireguard

rkt-io enables applications to easily build with a commodity package manager

21

Evaluation

Evaluation: Benchmarks and applications

e Synthetic benchmarks:
o Storage (fio) and network (iPerf)
e Real-world applications:

m Sqlite (Speedtest), nginx (wrk), Redis (YCSB), MySQL (Sysbench)
e Baselines

o Non-secure: Native Linux
o Secure: SCONE (host OS) & SGX-LKL (library OS)

23

Network stack: iPerf

A
14 —
12 -
5
o
8 107 I
— «Q
2 e >
= 9x speed-up ‘-'2
S 2
o 61 =3
< (9]
= =
4 @
2 —

native sgx-lkl scone rkt-io

Rkt-io provide hight iPerf network throughput due to NIC offloading

24

Storage stack: fio (random read-write)

A
BN read
800 — .
. write
"y
@ 600 - T
= &
= D
2 @
g\ 400 = o
o o
c ®
= Up to 7x speed-up =
200 - /
0 —

native sgx-lkl scone rkt-io

Disk throughput ahead to other frameworks but behind native
(smaller page cache)

25

Evaluation: MySQL (sysbench)

Throughput [events/sec]

300

250 —

200 =

150 -

100 -

50 -

Janeq sI JaybiH
Latency [ms]

native sgx-lkl scone rkt-io native sgx-lkl

Both SGX-LKL and rkt-io are faster than native

40 —
. 30 -
20 -
10 -
v I . o »

scone

rkt-io

Janaq si JamoT

26

Analysis of futexes in MySQL

Top 5 Syscall Count Time (us) Total (%)

[#1 futex 64 4.20e+07 69.4]
#2 read 24728 9.40e+06 15.5
#3 select 9 8.99e+06 14.8
#4 fsync 436 6.03e+04 0.1
#5 write 8243 3.48e+04 0.06

Breakdown of Top-5 syscalls in MySQL native execution

MySQL performance benefits from LibOS futexes / context switching

27

Summary

e Current SGX-implementation are not designed for high-performance 1/0
o OS bottlenecks: The OS is still on the I/0O path

o 1/O threads: Require tuning to find optimal number of 1/O threads

o Data copies: Additional data copies between TEE « |0 threads <« OS
e rkt-io provides

o Transparent and fast access to the 1/0O devices

o Linux ABIl-compatibility for applications in TEEs

Performant + Secure + Transparent

Try it out!
https://github.com/Mic92/rkt-io

28

https://github.com/Mic92/rkt-io

