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Security in the untrusted infrastructure
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How do we ensure application security
in untrusted cloud environments?




Trusted computing
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trusted execution environments (TEES)
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/O in TEESs: "Strawman design”
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Current I/0O mechanisms: “Switchless design”
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Switchless design avoid world-switches on the I/O path
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Limitations of switchless designs

e Performance
o OS bottlenecks: The OS is still on the I/O path

o /O threads: Needs dedicated I/O threads, require tuning to find optimal number of threads

o Data copies: Additional data copies between TEE « IO threads «» OS

e Compatibility

o LibOS-based approaches often only provide a subset of Linux ABI



rkt-io: A Direct |/O library for TEEs

rkt-io combines a library OS with direct I/O libraries
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Direct I/O in TEES
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Design



Design principles
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I/O interface:
Host OS independence
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1. Host OS independent I/O stack

Network: Storage:
e DPDK (Data Plane Development Kit) e SPDK (Storage Performance Development Kit)
e Direct access to fast network interface e  Direct access to NVMe devices from userspace
e No TCP/IP stack e No filesystem

e No socket e No file abstraction

How to maintain compatibility with existing APIs?



rkt-io: Host OS independent I/O stac
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I/0 event handling:
Polling-based approach
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2. 1/0 event handling

Interrupt based driver

NIC driver

Interrupts send receive

NIC

Interrupts cause world switches in TEE!
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2. Rkt-io’s polling driver (for NIC)

TCP/IP stack Polling thread TEE

|
send() poll() poll()/receive()

@ Host memory

rkt-io uses device polling to handle the I/O events




I/O stack partitioning:
Control and data path partitioning
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3. 1/0 stack partitioning for TEEs
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One-copy network/block device driver

SKB = Linux’s internal buffer socket

Before  After

TCP/IP stack 1 TEE memory TCP/IP stack

: . Send < Receive!

ST T

SKB \/ SKB | | | skg | Copy | sk ||

. i/ ] i
— A.@.QP.Y-&-------,I i <— No copy! —

@ Untrusted »
i | memory | |
| : & :

Page cache/socket buffer are written to unencrypted memory 19




Usage



Usage

$ rkt-io-run ./app-disk.img /usr/bin/redis-server --bind 10.0.1.1

e Applications are packaged as encrypted, signed filesystem images
e Transparent substitution of musl libc at runtime

e |/O path is (optionally) encrypted:
o Full disk encryption with cryptsetup
o Layer-3 VPN with wireguard

rkt-io enables applications to easily build with a commodity package manager
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Evaluation



Evaluation: Benchmarks and applications

e Synthetic benchmarks:
o Storage (fio) and network (iPerf)
e Real-world applications:

m  Sqlite (Speedtest), nginx (wrk), Redis (YCSB), MySQL (Sysbench)
e Baselines

o Non-secure: Native Linux
o Secure: SCONE (host OS) & SGX-LKL (library OS)
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Network stack: iPerf
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Storage stack: fio (random read-write)
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Evaluation: MySQL (sysbench)
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Analysis of futexes in MySQL

Top 5 Syscall Count Time (us) Total (%)

[#1 futex 64 4.20e+07 69.4]
#2 read 24728 9.40e+06 15.5
#3 select 9 8.99e+06 14.8
#4 fsync 436 6.03e+04 0.1
#5 write 8243 3.48e+04 0.06

Breakdown of Top-5 syscalls in MySQL native execution

MySQL performance benefits from LibOS futexes / context switching
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Summary

e Current SGX-implementation are not designed for high-performance 1/0
o OS bottlenecks: The OS is still on the I/0O path

o 1/O threads: Require tuning to find optimal number of 1/O threads

o Data copies: Additional data copies between TEE « |0 threads <« OS
e rkt-io provides

o Transparent and fast access to the 1/0O devices

o Linux ABIl-compatibility for applications in TEEs

Performant + Secure + Transparent

Try it out!
https://github.com/Mic92/rkt-io
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