Provenance expressiveness benchmarking on non-deterministic executions

Sheung Chi Chan
Heriot Watt University

James Cheney
University of Edinburgh

Pramod Bhatotia
Technische Universitdit Miinchen

The Alan Turing Institute

Abstract

Data provenance is a form of meta-data recording inputs
and processes. It provides historical records and origin in-
formation of the data. Because of the rich information pro-
vided, provenance is increasingly being used as a foundation
for security analysis and forensic auditing. These applica-
tions require provenance with high quality. Earlier works
have proposed a provenance expressiveness benchmarking
approach to automatically identify and compare the results
of different provenance systems and their generated prove-
nance. However, previous work was limited to benchmarking
deterministic activities, whereas all real-world systems in-
volve non-determinism, for example through concurrency and
multiprocessing. Benchmarking non-deterministic events is
challenging because the process owner has no control over
the interleaving between processes or the execution order of
system calls coming from different processes, leading to a
rapid growth in the number of possible schedules that need
to be observed. To cover these cases and provide all-around
automated expressiveness benchmarking for real-world exam-
ples, we proposed an extension to the automated provenance
benchmarking tool, ProvMark, to handle non-determinism.

1 Introduction

There are many different provenance systems in the prove-
nance research field. Some of them aim to record the data
exchange flow and help answer queries such as how the data
attained the current state and which entities are responsible
for the modifications. Also there are some provenance sys-
tems that record system activities and provide ways for later
reproduction of the execution flows or evidence for security
auditing or digital forensics. Some examples of these sys-
tems include PASS [9], Hi-Fi [11], SPADE [8], OPUS [1],
LPM [2], Inspector [14], and CamFlow [10]. These systems
aim to collect provenance information from different compo-
nents in different operating systems and generate high-level
provenance graphs after certain post-processing. As there

are no mandatory standards for provenance descriptions of
system activity, different provenance systems may generate
or filter out different information during the post-processing
period and give different output for monitoring the same set
of executions.

In earlier work, Chan et al. [4, 5] proposed an expressive-
ness benchmarking approach to elucidate the relationship
between operating system activities and the resulting prove-
nance graphs. They built an automated system to generate
provenance benchmarks to describe system call behaviour
and allow users to analyse and compare quality of provenance
data, allowing a simple way for correctness and correctness
checking with additional criteria. Later, Chan et al. [6] demon-
strated an application of the ProvMark tool proposed in earlier
work [4] for integrity checking and abnormality detection of
provenance records which allows users to discover problem-
atic provenance results. One of the big limitations mentioned
by the above literature is that they only handled deterministic
executions. This is far from realistic because concurrency and
non-determinism are present in all realistic applications.

#include <unistd .h>
void main () {
while (1) {
if (fork ()) {
// Escalate to root privilege
} else {
//Add fake user with root privilege
}
}

Listing 1: Malicious execution with non-determinism

Many provenance systems for security and forensic au-
diting require a high level of accuracy and integrity of the
collected data and mechanisms. This is because those data
may act as important evidence for identifying and proving
the existence of possible security incidents like intrusions
or illegal system access. Those data may also be used for

auditing regulatory compliance. Although in Chan et al. [6]
the authors show that ProvMark is capable of discovering
potential integrity problems for those provenance systems,
the larger scale application remains an open problem because
many of the realistic applications and attacks are working
under non-deterministic settings, like the one shown in List-
ing 1 in which the real intrusion may exist in different non-
deterministic branches. For a larger coverage of possible ap-
plications and to increase the usefulness of the ProvMark
approach, it is necessary to extend the ProvMark mechanism
to handle non-deterministic input. This setting allows Prov-
Mark to provide better expressiveness benchmarking func-
tionality for provenance systems on collecting accurate and
complete provenance information for both deterministic and
non-deterministic program execution. This could help to anal-
yse the capabilities of those provenance systems for security
and forensic applications. In addition, adding support for non-
deterministic input can also provide a broader understanding
to normal users of the behaviour and reliability of different
provenance systems for non-deterministic program execution
arising in real-life applications.

This paper proposes an extension to the ProvMark tool that
can also handle non-deterministic program execution and cov-
ers a large range of provenance expressiveness benchmarking
towards more realistic application executions. This approach
shows that ProvMark is more capable of handling realistic
executions to provide a beneficial comparison to users of
provenance data quality checking for security applications.
The extensions aim to answer the following questions.

* What are the differences between provenance graphs
generated for deterministic or non-deterministic execu-
tions?

* How can we cover all of the non-deterministic paths to
retrieve reliable results?

* How to identify if a certain non-deterministic branch has
been executed in a trial run?

* How to analyse or compare provenance benchmarks for
non-deterministic executions?

The structure of the rest of this paper is as follows. Sec-
tion 2 provides some background of the ProvMark tool and its
application to integrity checking and abnormality detection
with deterministic input. Section 3 describes our extension of
ProvMark in detail, including the methodology and implemen-
tation. Also, discussion of how to ensure non-deterministic
path coverage is included. Section 4 shows some sample
results generated by the extended ProvMark for certain non-
deterministic examples. Additional analysis and comparison
of the extension and the results themselves are included in this
section. Section 5 discusses the usefulness of the ProvMark
extension and discuss further limitations. Finally, Section 6
concludes and discusses ongoing and future steps.

2 Background

In Chan et el. [4, 5], the authors proposed provenance ex-
pressiveness benchmarking and then developed an automated
system ProvMark to handle the benchmarking process. Their
major contributions included the identification of how differ-
ent system call behaviours contribute to the final provenance
graph results and generate provenance benchmarks for each of
the system calls automatically. These provenance benchmarks
show how three different provenance systems (SPADE [8],
OPUS [1] and CamFlow [10]) each handle the same set of
operations in a different manner. They also act as a basis to
identify what information is processed by each provenance
system in the final provenance graph if certain activities hap-
pened in the execution period. Developers of those prove-
nance systems can then use these provenance benchmarks
to compare provenance data qualitatively for different appli-
cations. Besides, it also helps to discover possible problems,
bugs and malfunctions in those provenance systems when
some unexpected provenance benchmark has been received.

ProvMark works by comparing the provenance resulting
from monitoring a background program that performs back-
ground activity such as process initialization and termination
with a foreground program which also performs the addi-
tional target activities. Another key contribution of the origi-
nal ProvMark tool is the adoption of answer set programming
to help solve the hard graph/sub-graph isomorphism problems
of property graphs [3]. This allows a more flexible way to
compare provenance graphs with large numbers of elements
including property labels.

For the provenance benchmarking process, we need to
make use of certain provenance recording tools to gener-
ate provenance graphs at the beginning. We need to start the
chosen provenance collecting tools with certain settings, then
we need to execute the background and foreground binaries.
ProvMark uses a unified format to analyse the provenance
graph, so those provenance graphs need to be converted into
this format. Datalog is the data format chosen for this purpose.
After that, generalization process is performed to filter out
volatile properties. These volatile properties are mainly times-
tamps and identifiers that are always different on different
trial runs and do not provide much information for the real
behaviour of a specific set of executions. Besides, they also
act as noise because they are not pertained for each run and
keep changing for every trial run which affect the accuracy of
the graph filtering and benchmark generation process. Lastly,
the generalized foreground and background graphs are com-
pared to filter out the duplicate part and the remaining part in
the foreground graph is the resulting provenance benchmark.

In a later paper, Chan et al. [6] performed small manual
experiments to simulate unreliable sources of provenance col-
lection to demonstrate the feasibility of the integrity checking
and abnormality detection by ProvMark on deterministic ex-
ecutions. Their preliminary results show that ProvMark was

able to assist the discovery of integrity problems in prove-
nance records and underlying problems or attacks.

The above mentioned literature just concentrates on deter-
ministic input. They are not sufficient to handle realistic cases
which contain non-deterministic execution. This paper aims
to extend ProvMark’s benchmarking process to support both
deterministic and non-deterministic activity sequences and
make the tool applicable to more realistic situations.

In a general context, non-deterministic events refer to some
system call combinations that may return different kernel ac-
tion sequences across different runs. The major reason for
the unpredictability either comes from the system calls them-
selves or combinations of multiple system calls. There are
multiple types of non-deterministic system calls that can re-
sult in non-deterministic events, which can be classified into
different categories. Concurrent system calls can handle mul-
tiple threads and processes but do not have much control over
the execution order of the multiple threads and processes.
Both Socket system calls and Streaming system calls are sys-
tem calls handling communication and data transfer across
different artefacts, processes and components. Streaming sys-
tem calls perform internal communication and Socket sys-
tem calls perform internet communications and streaming
through sockets. I/O system calls control the input and out-
put events and also data buffering which also belongs to the
non-determinism family. Last but not least, there are some
adversaries that make use of some randomization and redun-
dancy to create obfuscation to avoid showing the patterns of
their attack or some other sensitive activities. These system
calls also belong to the family of non-deterministic events.

3 Extending ProvMark for non-determinism

As mentioned above, our main objective is to extend Prov-
Mark and its automated provenance benchmarking approach
to non-deterministic activities. The original design of Prov-
Mark requires comparisons of two provenance graphs (ig-
noring some volatile properties that keep changing in each
trial executions), one named as background graph (bg) which
contains the provenance describing the background activity
and the other named as foreground graph (fg) which contains
the provenance describing the target activity combined with
the background activity. One of the major features of the Prov-
Mark tool is to compare and identify the difference between
the two graphs which represents the provenance structure
of the target events. ProvMark retrieves the two provenance
graphs by executing a benchmark program with CPP direc-
tive statement. The target activities in this special benchmark
program are enclosed by the #ifdef TARGET CPP directive
statement. The program is then compiled into two different
binaries with or without the TARGET keyword defined. This
results in two slightly different binaries which perform similar
background activities, and one of them performs additional
target activities. As a result, ProvMark retrieves two slightly

different provenance graphs bg and fg, from the execution
of the two similar programs and compares them to get the
difference. The difference forms the provenance benchmark
describing the target activities. In this section, we define our
extension on ProvMark to handle provenance benchmarking
on non-deterministic events.

3.1 Overview of the extension

The provenance benchmark generated by ProvMark can iden-
tify the kernel execution patterns for certain action sequences.
The same action sequences may behave in a non-deterministic
manner in the kernel throughout multiple executions. To dis-
tinguish the multiple sets of non-deterministic events in the
provenance graph format, we need to trace the activities in-
volved in the kernel action sequences represented by the re-
sulting provenance graph. In a Unix-like environment, there
are many tracing tools at the kernel level. We could also cus-
tomize our module to do the job like CamFlow [10] but that
would require the system to run on top of the customized
kernel module and requires kernel access to do so. We choose
an easier approach to make use of the existing activity tracer
Ftrace [7,12,13]. Ftrace is a tracing utility built and residing
in the kernel. It is derived from two well-known tools, the
latency tracer and the logdev utility. They combine to help
us monitor the activities and events (based on system calls)
happening in the kernel and return debugging information
describing all executions and action sequences. Similar to
the LSM hook of CamFlow, Ftrace is a kernel utility which
requires some module to pass the result back to the user level
for processing. We choose trace-cmd to act as the front-end of
Ftrace which is a tool shipped with many Linux distributions.
It can configure, start, and stop Ftrace event and function trac-
ing and retrieve results from the kernel. It will also process
and filter the results according to the configuration.

As we mentioned above, non-deterministic events will gen-
erate multiple sets of kernel action sequences or similar sets
with different orders. For example in Code Snippet 2, we put
two system calls in separate threads. Both of the system calls
will be executed eventually, but the execution order is non-
deterministic. Another example in Code Snippet 3, we apply
randomization to conditional branches, so different system
calls are executed determined by the result of the random
source. Different system calls may be executed for each trial
run. To handle different provenance graphs representing dif-
ferent possible executions and to preserve the generalization
features which aim to remove volatile information, we need
to distinguish graphs and group the similar graphs together ac-
cording to the combination and order of system calls in each
of the graphs. We make use of the event tracing features of
Ftrace to help us identify and group the generated provenance
graphs. As we know, Ftrace also aims to record the action
sequences, events and functions that happened in the kernel
level, so if the same schedule happened twice, their Ftrace

result should also be similar. In this case, the Ftrace result
can act as the fingerprint for a certain combination of kernel
action sequences and the related provenance graph generated
for this combination. We only need to match the fingerprints
to group the generated provenance graphs. The process to
distinguish the generated provenance graphs by comparing
their fingerprints (Ftrace results) is defined as fingerprinting
and it is the additional step added to ProvMark between the
recording subsystem and generalization subsystem. Although
we can not guarantee that all paths are executed in the trial
executions, we at least can make sure that the process of gen-
eralization, comparison and benchmark generation is only
done between provenance graphs representing the same ex-
ecution paths. This action avoids polluting the patterns and
benchmarks with non-isomorphic (sub)graph pairs.

#include <unistd .h>
void main() {
if (fork()) {
//Action 1
} else {
//Action 2

}

Listing 2: Example for non-determinism with different orders

#include<stdlib .h>
#include <time .h>
void main() {
srand (time (0));
if (rand()%2 == 0) {
// Path 1
} else {
// Path 2

}

Listing 3: Example for non-determinism with different paths

In some of the cases, the executions of all possible combina-
tions of an non-determinisitic input may not be possible if the
number of system calls increases or more complex conditions
are introduced. Also, as the non-deterministic event execution
and schedules are out of our control, there is a possibility that
some combinations have far lower chance to be triggered and
we can never guarantee to execute all combinations of the
non-deterministic input. For a better coverage, we run the trial
execution for multiple times more than the total number of
combinations. For example, we will execute 12—16 trial runs
for non-deterministic events that have 4 combinations. Al-
though this may not be enough to cover all possible schedule,
repeating for 3 to 4 times more than the total number of sched-
ules is enough to cover most of the common schedules and

those leftovers are only some less frequent schedules in those
test cases we are using with small number of schedules. Scal-
ing up to much larger numbers of non-deterministic schedules
may require significant increase of the trial. In general, if
most of the schedules are following a normal distribution, that
amount of trial execution should cover most of the schedules
for smaller cases. We then process the graph generalization
and benchmarking processing on top of this assumption. We
also provide an evaluation of the coverage in Section 4.

3.2 Tracing kernel actions

The original ProvMark tool uses a specialized module to
control the underlying provenance recording module like
SPADE [8] or CamFlow [10]. Those tools will monitor the
execution of the binaries and return provenance graphs as a
result. The process will execute multiple times to collect a
set of background graphs and a set of foreground graphs for
the generalization process. After that, we generalize each of
the groups separately to avoid the incomparable problems be-
tween graphs representing different non-deterministic paths.

The first thing we need to do is to classify and group the
graphs with the same schedules (non-deterministic path). Al-
though it is possible to obtain the same provenance result on
the execution of different non-deterministic path, we consider
two trial runs on the same schedule if they have exactly the
same set of system calls and execution order. The main reason
for this assumption is because if they have the exact same set
of executions, then it is unnecessary to distinguish them as
they result in the same provenance benchmark. As a result,
we can classify those provenance graphs by matching their
system call order list. We use an existing kernel framework
Ftrace and its user-level control client trace-cmd to retrieve
all of the system call executions that are passing through the
permission checking in the kernel performed by the Linux
Security Enhancement (Linux SE).

In each trial run of the foreground program, we use trace-
cmd to start Ftrace alongside the provenance collecting tools
to capture the list of system calls for the execution of the fore-
ground program. We also configure the provenance collecting
tools to ignore the system calls generated by the process of
controlling trace-cmd and any of its child processes to avoid
additional undesired provenance from the trace-cmd utility
and the Ftrace framework. After each trial run, we get a system
call schedule to match with each of the foreground provenance
graphs. As we assumed that all of the non-deterministic input
is enclosed in CPP directives, the background graph is al-
ways deterministic and so all of them should have the same
sequence of system calls received from the trace-cmd com-
ponents. This statement should also be true for foreground
graphs of deterministic input.

3.3 Fingerprinting and grouping

After the execution of the binaries, the provenance recording
tools will return a set of provenance graphs. In addition, the
Ftrace framework will also return a set of system call sched-
ules which relays through the trace-cmd utility to the user
level. Although in our experiment, we are considering small
sets of system calls initially, we eventually intend to adapt
ProvMark for use on larger target non-deterministic action
sequences. Large target action sequences not only produce
larger provenance graphs for analysis but also contain a large
number of system calls to be executed. Thus, it will result in
a very long schedule. For easy classification, analysing effi-
ciency and readability consideration, it is essential to control
the size of these identifiers. To do this, we first concatenate all
the system call names in the schedule to form a long string,
then we generate a hash value for this long string to form the
fingerprint which is always a fixed size. This fingerprint is
used directly as the identifier for the graph.

—— Hash
Head‘ﬁl » 7001b5. ..
Write

Hash 7981b5...

HEE‘“‘_: > 7081b5. ..
Write

7c2d3z...

—1 Hash
"“"”TE‘_: S 7c2d32. ..
Read

Figure 1: Fingerprinting and Grouping

The next step is to group the foreground graphs into sim-
ilar groups and generalize the graph sets separately. In this
process, graphs with the same fingerprint will be grouped
because it means that they executed the same system calls in
the same order. As we are assuming all of the possible combi-
nations of the non-deterministic events should be executed,
the total number of groups should be equal to the number
of the possible combinations. This statement is also true for
deterministic events because the number of possible combina-
tions for deterministic input should be one. After the grouping
of the graphs, each group is passed on to the generalization
subsystem to continue the process, the fingerprint for each
of the groups should also be preserved. The result of this
stage should be a generalized background graph and a set of
generalized foreground graphs, each with its own fingerprint

identifier. Figure | shows an illustration of the fingerprinting
and grouping process. Those graphs will be classified into
groups and handled separately. The generalization process
will be done for each group of graphs separately.

3.4 Generate multiple benchmarks

The clear difference from the handling of deterministic events
is that there may exist multiple foreground graphs that need to
go through ProvMark process. Each generalized foreground
graph is associated with its unique fingerprint and is compared
to the background graph one by one to retrieve a provenance
benchmark pattern. At last, ProvMark generates a set of prove-
nance benchmark graphs after processing non-deterministic
program input and each of the provenance benchmark results
are labelled by their fingerprint. This implementation treats
each of the non-deterministic schedules as a separate deter-
ministic schedule and generates a provenance benchmark
one by one. This approach transforms the non-deterministic
execution to multiple deterministic executions for the prove-
nance benchmarking process. As a result, each of the separate
comparisons generates a different provenance benchmark, all
of these benchmarks contribute to the group of provenance
results for this specific non-deterministic execution.

Recalling the motivation of ProvMark and the expressive-
ness benchmarking, we aim to identify the key elements of a
provenance graph that represent the target action sequences
correctly and completely which can map the graph back to a
set of action sequences with a one to one relationship. The
resulting provenance benchmark represents the key elements
to describe a certain action sequence for that specific prove-
nance system, thus it acts as a benchmark for the tool. It can
also be used as a pattern to identify the existence of the action
sequence in a runtime environment for the same provenance
system. For non-deterministic input program, we do not know
which combination will execute in each trial. Thus we need
to collect all possible combinations of executions and map
them one by one to the current trial. If any of the benchmarks
matched the new trials, we can confirm the existence of the
matching of non-deterministic action sequences and we can
even label them by their fingerprints. If the benchmark pro-
cess covers all possible combinations, the generation of the set
of provenance patterns for each of the combinations should
be complete in describing all possible behaviours of the non-
deterministic input program. Thus it should cover all possible
future runs and guarantee the identification of the existence
of execution for either of the combinations. This, however,
is not guaranteed in the current implementation because we
still have no way to ensure all combinations are covered. This
remains a future enhancement for ProvMark.

4 Result analysis

This section provides a basic evaluation of our non-
deterministic handling extension. We create one small non-
deterministic program input for the evaluation.

4.1 Testing program

In the presence of non-determinism, there will not be much
difference in the recording subsystem of ProvMark. Ftrace
works in parallel with the provenance recording tools to cap-
ture the system call lists which are then concatenated and
hashed to form the fingerprint identifiers. The additional step
required from the original ProvMark design is the classifica-
tion and grouping steps and treating each of the groups as a
separate deterministic case for further processing.

Code Snippet 4 shows a benchmark program with non-
deterministic input. It contains two threads, one thread per-
forms two read events and the other thread performs two write
events. The total number of possible schedules is 6. We la-
belled the two write events as W, and W, and the two read
events as R; and R,. Because the write events and the read
events are in the same thread respectively, W; must be per-
formed before W, and R; must be performed before R;. Thus
the only possible combinations are shown in Table 1.

#include <time.h>
#include <stdlib .h>
#include <fcntl.h>
#include <unistd .h>
int main() {
int id=open("test.txt", O_RDWR);
char buf[1];
#ifdef PROGRAM
if (fork()) {
read (id, buf, 1); // RI
read (id, buf, 1); // R2
} else {
write (id , "TEST", 1); // WI
write (id , "TEST", 1); // W2
}
#endif
close (id);
}

Listing 4: Sample benchmark program with non-determinism

#1 | W, =W, >R — Ry | #2
#3 | W, - R — R, —W, | #4
#5 Ri—W, —R,—W, #6

Wi —R =W — Ry
Ri—> R, —>W =W,
Ry —-W, —W, —R,

Table 1: All possible execution paths of Code Snippet 4

4.2 Sample provenance result

From the description of the testing program above, we under-
stand that there are at most six different execution schedule
possible for the execution of the program shown in Code
Snippet 4. Theoretically, the choice of executing each of the
schedule depends on many factors and should be considered
as random. Thus we do not have any certainty guarantee that
all schedules are covered because there may exist some less
frequent combinations or we may simply be unlucky. We use
the provenance tool SPADE [8] for this experiment to try
generating provenance benchmarks for each of the schedules.

et
Vargian:

(b) Path #2

update

Main Process

(f) Path #6

Figure 2: Provenance benchmarks for Code Snippet 4

Figure 2a-2f shows the six different benchmarks as an
example. The write system call will trigger a version update
of the files. As there are exactly two write events in all of
the possible schedules, thus there are three versions of the
file test.txt in the graph results. The different order of the
write and read system calls does affect some edges as they
are pointing out from a different version of the same file.
Although they look similar, it does reflect that the read event
is initiated from different versions of the file. For example,
the result of Path #3 shown in Figure 2c has two read events
between two write events. In this path schedule, the file has
been updated once before the two read events, thus the two
edges representing the read event points to version 1 of the
file. On the contrary, the two read events happen before any
write event in Path #4 (Figure 2d), which makes the resulting
graphs contains two read edges pointing to version 0 of the
file. The yellow oval represents the files in different versions
while the blue rectangle represents the main process of the
program execution. Due to limited space, some other property
labels have been omitted.

4.3 Non-deterministic schedules coverage

One of the important considerations for the provenance bench-
mark generation of non-deterministic input is the coverage of
possible schedules. In general, if there are N different sched-
ules for a program, it is not likely that all N schedules will
be covered by just executing N trials. It generally takes more
execution trials to cover all the schedules. We have done some
basic evaluation of the coverage using the program described
in Code Snippet 4. As mentioned in Table 1, there are six
possible schedules for this program. We defined twenty test
cases. Each of the test cases has a different number of trial
executions ranging from one trial to twenty trials. Each of the
test cases is executed 10 times and results in 10 numbers of
coverage which are used to calculate the average coverage of
schedules for each test cases. The result is shown in Figure 3.

From the chart shown in Figure 3, we can see the average
number of different schedules observed after executing vary-
ing numbers of trials. The experiment is done by observing
the audit log to determine the order of the read/write event.
This is possible because the audit daemon will automatically
assign event IDs to system calls in execution order, thus ob-
serving the event IDs for the read/write event can determine
the schedule for this run. Although in the 10 repeat executions
of 6 trials can sometimes cover all 6 schedules, it does not
succeed in most cases and makes the average coverage lower
than 3. In our experiment, even if we execute 20 trials, we still
cannot guarantee that all 6 trials have been covered. During
our experiment, we successfully cover all 6 schedules in 9
runs of the 10 trial executions of the test case, but there is 1
run that only covers 5 schedules for the 20 trial executions
test case which make it not 100% coverage. Even if the ex-

~

N w EN w <))

-

of Different Schedules (Average)

o
o
O]

10 15 20

of Trial Executions

Figure 3: Average schedule covered for Code Snippet 4

periment does succeed in covering all of the schedules, it is
still not guaranteed that in the next execution, all schedules
will be covered. We just assume in most of the cases, most
schedules should be covered and thus there is a provenance
benchmark generated for each of the possible schedules. Re-
peating the process or increasing the number of trials does
help to increase the full coverage rate but it has no guarantee
for full coverage.

From the experiment above, it is understood that although
in the worst-case scenario, executing 20 trials still did not
cover all schedules, it is still possible to cover them with
fewer trials in general. It is always important to consider the
balance between performance and accuracy. In addition to the
above simple trial and error approach to determine the best
threshold balance for the performance and full coverage, we
also plan to make use of a symbolic execution approach to act
as an evaluation mechanism to help us determine the best trial
run needed for each of the experiment. This approach is one
of the planned enhancements to our extension to ProvMark
and are further discussed in Section 5.

5 Discussion

There are two limitations from our extension requiring further
enhancement. In the integrity checking case study in Chan et
al. [6], it provides two features. One of them is to identify if
integrity problems and abnormality do exist in an execution.
The other one is to showcase the provenance for the problem-
atic part which helps the developers to locate the problem.
Our extension to allow ProvMark to handle non-deterministic
input still contains certain limitations. There is a possibility of
false negatives with non-determinism. In our simple program,
each possible path schedule contains exactly two read and two
write events. Thus the random loss of system call records is
identifiable from the incorrect number of the resulting graph
as all schedule has four system calls for the correct execution.

But in reality, this may not be true for every execution. An
example is shown in Listing 5. In this program, the execution
path is either a single read event or a read event followed
by a write event. If the current execution goes through the
second path and the audit log of the write event is lost and
causes an integrity problem, our approach will not be able to
detect it as the resulting audit log and provenance graph will
falsely match the model provenance graph for the first path
and get an empty result. This creates a false negative event
for the integrity checking. Currently, we can only repeat the
experiment for more runs to reduce (but not eliminate) the
false negative rate, it remains a limitation for the approach
and requires further enhancement.

#include<stdlib .h>
#include <time .h>
void main () {
srand (time (0));
if (rand()%2 == 0) {
read (...);
} else {
read (...); write (...);

}

Listing 5: Example for special case

Aside from the possible false negative detection, our ap-
proach contains another limitation. If there is a loss in the
provenance collection, we are able to identify it but we may
fail to detect the path of the target execution or locate the prob-
lematic path schedule. The major reason is that it is possible
that two or more paths behave very similarly to each other
when a certain system call is missing from the input. This
remains one of the limitations of our approach extending to
non-determinism and integrity checking reasoning. It requires
future enhancement. Our approach does allow ProvMark to
handle non-deterministic inputs, and additional consideration
of every case and applications of this approach should be the
next target for future research and enhancement.

In reality, the handling of non-determinism is one of the
obstacles to using ProvMark for security analysis and intru-
sion detection besides the scalability problem. Although our
work does not guarantee to cover all non-deterministic paths
for a random execution, it does help to generate benchmark
patterns for identifying most of the possible paths of execu-
tion. This can help to understand and discover possible paths
of execution and analyse them to understand what activity
sequence has been executed in a runtime section. It also helps
to understand the behaviour of certain activity sequences and
how provenance systems describe them. On top of that, the be-
haviour and reliability of the provenance system could also be
evaluated by comparing benchmarks for (non-)deterministic
and executions and across different provenance systems.

6 Conclusion

The original design objective of the automated ProvMark
tool is aiming to provide all-around automated expressive-
ness benchmarking for real-world applications and execu-
tions. Thus ProvMark’s initial lack of support for nondeter-
mimism was one of the biggest obstacles to applying Prov-
Mark to security analysis, intrusion detection and integrity
checking. We proposed an extension to ProvMark to handle
non-determinism. We then provide simple evaluation with
small program examples. We also discuss limitations of our
approach and possible future enhancements of enhanced Prov-
Mark. We demonstrate that the enhancement of ProvMark
helps to analyse the behaviour and reliability of the prove-
nance systems used for security and related applications. This
can help promote dependable provenance systems for specific
security applications like intrusion detection, auditing and
forensic evidence trace generation.

Although our work does not guarantee to cover all non-
deterministic paths for a random execution, it does help to
generate benchmark patterns for identifying most of the pos-
sible paths of execution. This can help to discover possible
paths of execution and analyse them to understand what ac-
tivity sequence has been executed in a runtime session. This
work provides an alternative for identifying malicious be-
haviour in certain execution. Our extension to ProvMark is
evaluated and shown to work well for handling different kinds
of non-determinism. It is important to appreciate that we are
not modifying the basic functionality of the ProvMark tool,
thus the original assumptions and limitations of ProvMark
still apply, with the exception that non-deterministic execu-
tion has been properly handled by our extension. Our work
successfully extends ProvMark to handle non-deterministic
coverage, both in experiment and a realistic case study. This
approach allows ProvMark to provide more complete and re-
alistic analysis and benchmarking of provenance tools, which
result in more reliable and consistent provenance systems.

Acknowledgements

Effort sponsored by the Air Force Office of Scientific Re-
search, Air Force Material Command, USAF, under grant
number FA8655-13-1-3006. The U.S. Government and Uni-
versity of Edinburgh are authorised to reproduce and distribute
reprints for their purposes notwithstanding any copyright nota-
tion thereon. Cheney was also supported by ERC Consolidator
Grant Skye (grant number 682315) and an ISCF Metrology
Fellowship grant provided by the UK government’s Depart-
ment for Business, Energy and Industrial Strategy (BEIS).
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under contract
FA8650-15-C-7557.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Nikilesh Balakrishnan, Thomas Bytheway, Ripduman
Sohan, and Andy Hopper. OPUS: A lightweight system
for observational provenance in user space. In Proceed-
ings of the 5th USENIX Workshop on Theory and Prac-
tice of Provenance (TaPP 2013). USENIX Association,
2013.

Adam M. Bates, Dave Tian, Kevin R. B. Butler, and
Thomas Moyer. Trustworthy whole-system provenance
for the Linux kernel. In Proceedings of the 24th USENIX
Security Symposium (USENIX Security 2015), pages
319-334, 2015.

Sheung Chi Chan and James Cheney. Flexible graph
matching and graph edit distance using answer set pro-
gramming. In Practical Aspects of Declarative Lan-
guages - 22nd International Symposium, PADL 2020,
New Orleans, LA, USA, January 20-21, 2020, Proceed-
ings, pages 20-36, 2020.

Sheung Chi Chan, James Cheney, Pramod Bhatotia,
Thomas Pasquier, Ashish Gehani, Hassaan Irshad, Lu-
cian Carata, and Margo Seltzer. ProvMark: A prove-
nance expressiveness benchmarking system. In Proceed-
ings of the 20th International Middleware Conference,
Middleware * 19, page 268-279, New York, NY, USA,
2019. Association for Computing Machinery.

Sheung Chi Chan, Ashish Gehani, James Cheney, Ripdu-
man Sohan, and Hassaan Irshad. Expressiveness bench-
marking for system-level provenance. In 9th USENIX
Workshop on the Theory and Practice of Provenance
(TaPP 2017), Seattle, WA, June 2017. USENIX Associ-
ation.

Sheung Chi Chan, Ashish Gehani, Hassaan Irshad, and
James Cheney. Integrity checking and abnormality de-
tection of provenance records. In /2th USENIX Work-
shop on the Theory and Practice of Provenance (TaPP
2020), Charlotte, NC, June 2020. USENIX Association.

Jake Edge. A look at ftrace. LWN-Linux Weekly News-
online, 2009.

Ashish Gehani and Dawood Tariq. SPADE: support for
provenance auditing in distributed environments. In Pro-
ceedings of the 13th International ACM/IFIP/USENIX
Middleware Conference (Middleware 2012), pages 101-
120, 2012.

Kiran-Kumar Muniswamy-Reddy, David A. Holland,
Uri Braun, and Margo Seltzer. Provenance-aware stor-
age systems. In Proceedings of the 2006 USENIX An-
nual Technical Conference, pages 43-56, 2006.

[10]

(11]

[12]

(13]

[14]

Thomas Pasquier, Xueyuan Han, Mark Goldstein,
Thomas Moyer, David M. Eyers, Margo Seltzer, and
Jean Bacon. Practical whole-system provenance cap-
ture. In Proceedings of the 2017 Symposium on Cloud
Computing (SoCC 2017), pages 405418, 2017.

Devin J. Pohly, Stephen E. McLaughlin, Patrick D. Mc-
Daniel, and Kevin R. B. Butler. Hi-Fi: collecting high-
fidelity whole-system provenance. In Proceedings of
the 28th Annual Computer Security Applications Con-
ference (ACSAC 2012), pages 259-268, 2012.

Steven Rostedt. Debugging the kernel using ftrace. LWN.
net, 2009.

Steven Rostedt. Ftrace linux kernel tracing. In Linux
Conference Japan, 2010.

Joerg Thalheim, Pramod Bhatotia, and Christof Fetzer.
Inspector: Data Provenance using Intel Processor Trace
(PT). In Proceedings of IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 25—
34. IEEE, 2016.

	Introduction
	Background
	Extending ProvMark for non-determinism
	Overview of the extension
	Tracing kernel actions
	Fingerprinting and grouping
	Generate multiple benchmarks

	Result analysis
	Testing program
	Sample provenance result
	Non-deterministic schedules coverage

	Discussion
	Conclusion

